\( %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Mes commandes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\multirows}[3]{\multirow{#1}{#2}{$#3$}}%pour rester en mode math \renewcommand{\arraystretch}{1.3}%pour augmenter la taille des case \newcommand{\point}[1]{\marginnote{\small\vspace*{-1em} #1}}%pour indiquer les points ou le temps \newcommand{\dpl}[1]{\displaystyle{#1}}%megamode \newcommand{\A}{\mathscr{A}} \newcommand{\LN}{\mathscr{N}} \newcommand{\LL}{\mathscr{L}} \newcommand{\K}{\mathbb{K}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\M}{\mathcal{M}} \newcommand{\D}{\mathbb{D}} \newcommand{\E}{\mathcal{E}} \renewcommand{\P}{\mathcal{P}} \newcommand{\G}{\mathcal{G}} \newcommand{\Kk}{\mathcal{K}} \newcommand{\Cc}{\mathcal{C}} \newcommand{\Zz}{\mathcal{Z}} \newcommand{\Ss}{\mathcal{S}} \newcommand{\B}{\mathbb{B}} \newcommand{\inde}{\bot\!\!\!\bot} \newcommand{\Proba}{\mathbb{P}} \newcommand{\Esp}[1]{\dpl{\mathbb{E}\left(#1\right)}} \newcommand{\Var}[1]{\dpl{\mathbb{V}\left(#1\right)}} \newcommand{\Cov}[1]{\dpl{Cov\left(#1\right)}} \newcommand{\base}{\mathcal{B}} \newcommand{\Som}{\textbf{Som}} \newcommand{\Chain}{\textbf{Chain}} \newcommand{\Ar}{\textbf{Ar}} \newcommand{\Arc}{\textbf{Arc}} \newcommand{\Min}{\text{Min}} \newcommand{\Max}{\text{Max}} \newcommand{\Ker}{\text{Ker}} \renewcommand{\Im}{\text{Im}} \newcommand{\Sup}{\text{Sup}} \newcommand{\Inf}{\text{Inf}} \renewcommand{\det}{\texttt{det}} \newcommand{\GL}{\text{GL}} \newcommand{\crossmark}{\text{\ding{55}}} \renewcommand{\checkmark}{\text{\ding{51}}} \newcommand{\Card}{\sharp} \newcommand{\Surligne}[2]{\text{\colorbox{#1}{ #2 }}} \newcommand{\SurligneMM}[2]{\text{\colorbox{#1}{ #2 }}} \newcommand{\norm}[1]{\left\lVert#1\right\rVert} \renewcommand{\lim}[1]{\underset{#1}{lim}\,} \newcommand{\nonor}[1]{\left|#1\right|} \newcommand{\Un}{1\!\!1} \newcommand{\sepon}{\setlength{\columnseprule}{0.5pt}} \newcommand{\sepoff}{\setlength{\columnseprule}{0pt}} \newcommand{\flux}{Flux} \newcommand{\Cpp}{\texttt{C++\ }} \newcommand{\Python}{\texttt{Python\ }} %\newcommand{\comb}[2]{\begin{pmatrix} #1\\ #2\end{pmatrix}} \newcommand{\comb}[2]{C_{#1}^{#2}} \newcommand{\arrang}[2]{A_{#1}^{#2}} \newcommand{\supp}[1]{Supp\left(#1\right)} \newcommand{\BB}{\mathcal{B}} \newcommand{\arc}[1]{\overset{\rotatebox{90}{)}}{#1}} \newcommand{\modpi}{\equiv_{2\pi}} \renewcommand{\Re}{Re} \renewcommand{\Im}{Im} \renewcommand{\bar}[1]{\overline{#1}} \newcommand{\mat}{\mathcal{M}} \newcommand{\und}[1]{{\mathbf{\color{red}\underline{#1}}}} \newcommand{\rdots}{\text{\reflectbox{$\ddots$}}} \newcommand{\Compa}{Compa} \newcommand{\dint}{\dpl{\int}} \newcommand{\intEFF}[2]{\left[\!\left[#1 ; #2\right]\!\right]} \newcommand{\intEFO}[2]{\left[\!\left[#1 ; #2\right[\!\right[} \newcommand{\intEOF}[2]{\left]\!\left]#1 ; #2\right]\!\right]} \newcommand{\intEOO}[2]{\left]\!\left]#1 ; #2\right[\!\right[} \newcommand{\ou}{\vee} \newcommand{\et}{\wedge} \newcommand{\non}{\neg} \newcommand{\implique}{\Rightarrow} \newcommand{\equivalent}{\Leftrightarrow} \newcommand{\Ab}{\overline{A}} \newcommand{\Bb}{\overline{B}} \newcommand{\Cb}{\overline{C}} \newcommand{\Cl}{\texttt{Cl}} \newcommand{\ab}{\overline{a}} \newcommand{\bb}{\overline{b}} \newcommand{\cb}{\overline{c}} \newcommand{\Rel}{\mathcal{R}} \newcommand{\superepsilon}{\varepsilon\!\!\varepsilon} \newcommand{\supere}{e\!\!e} \makeatletter \newenvironment{console}{\noindent\color{white}\begin{lrbox}{\@tempboxa}\begin{minipage}{\columnwidth} \ttfamily \bfseries\vspace*{0.5cm}} {\vspace*{0.5cm}\end{minipage}\end{lrbox}\colorbox{black}{\usebox{\@tempboxa}} } \makeatother \def\ie{\textit{i.e. }} \def\cf{\textit{c.f. }} \def\vide{ { $ {\text{ }} $ } } %Commande pour les vecteurs \newcommand{\grad}{\overrightarrow{Grad}} \newcommand{\Vv}{\overrightarrow{v}} \newcommand{\Vu}{\overrightarrow{u}} \newcommand{\Vw}{\overrightarrow{w}} \newcommand{\Vup}{\overrightarrow{u'}} \newcommand{\Zero}{\overrightarrow{0}} \newcommand{\Vx}{\overrightarrow{x}} \newcommand{\Vy}{\overrightarrow{y}} \newcommand{\Vz}{\overrightarrow{z}} \newcommand{\Vt}{\overrightarrow{t}} \newcommand{\Va}{\overrightarrow{a}} \newcommand{\Vb}{\overrightarrow{b}} \newcommand{\Vc}{\overrightarrow{c}} \newcommand{\Vd}{\overrightarrow{d}} \newcommand{\Ve}[1]{\overrightarrow{e_{#1}}} \newcommand{\Vf}[1]{\overrightarrow{f_{#1}}} \newcommand{\Vn}{\overrightarrow{0}} \newcommand{\Mat}{Mat} \newcommand{\Pass}{Pass} \newcommand{\mkF}{\mathfrak{F}} \renewcommand{\sp}{Sp} \newcommand{\Co}{Co} \newcommand{\vect}[1]{\texttt{Vect}\dpl{\left( #1\right)}} \newcommand{\prodscal}[2]{\dpl{\left\langle #1\left|\vphantom{#1 #2}\right. #2\right\rangle}} \newcommand{\trans}[1]{{\vphantom{#1}}^{t}{#1}} \newcommand{\ortho}[1]{{#1}^{\bot}} \newcommand{\oplusbot}{\overset{\bot}{\oplus}} \SelectTips{cm}{12}%Change le bout des flèches dans un xymatrix \newcommand{\pourDES}[8]{ \begin{itemize} \item Pour la ligne : le premier et dernier caractère forment $#1#2$ soit $#4$ en base 10. \item Pour la colonne : les autres caractères du bloc forment $#3$ soit $#5$ en base 10. \item A l'intersection de la ligne $#4+1$ et de la colonne $#5+1$ de $S_{#8}$ se trouve l'entier $#6$ qui, codé sur $4$ bits, est \textbf{\texttt{$#7$}}. \end{itemize} } \)

Tables

Principe de l'approximation
Pour déterminer les tables suivantes, on approche l'aire sous les fonctions de répartition par la méthode des trapèzes ou la méthode de Simpson (dites des paraboles). On découpe l'intervalle d'intégration en \( n\) morceaux et on fait la somme de l'approximation de l'intégrale sur de petits intervalles \( [x_k ; x_{k+1}]\) où \( x_k=a+\dfrac{b-a}{n}k\) .
Méthode des trapèzes.
On approche l'aire sous une courbe par l'aire facile d'un trapèze.
Découpage en \( 1\) trapèze
Découpage en \( 5\) trapèzes
Formule des trapèzes \( \dpl{\int_{a}^{b}f(x)dx=\lim{n\rightarrow+\infty}\sum_{k=0}^{n-1} \dfrac{b-a}{2n}\left(f\left(x_k\right)+f\left(x_{k+1}\right)\right)}\) L'algorithme en \Python d'approximation par un découpage en \( n\) trapèzes est : \beginlisting1 def ApproxIntTrapeze(f, a, b, n) : h=(b-a)/n res=[] m=a for i in range(n-1) : M=m+h res.append(h*(f(m)+f(M))/2) m=M return res \endlisting

Méthode de Simpson.
On approche l'aire sous la courbe par celle d'une parabole obtenue par les polynômes d'interpolation de Lagrange. Les trois point d'interpolation son les points aux extrémités et le point médian.
Découpage en \( 1\) parabole
Découpage en \( 2\) paraboles
Formule de Simpson \( \dpl{\int_{a}^{b}f(x)dx=\lim{n\rightarrow+\infty}\sum_{k=0}^{n-1} \dfrac{b-a}{6n}\left(f(x_k)+4f\left(\dfrac{x_k+x_{k+1}}{2}\right)+f(x_{k+1})\right)}\) L'algorithme en \Python d'approximation par un découpage en \( n\) paraboles est : \beginlisting1 def ApproxIntSimpson(f, a, b ) : h=(b-a)/n res=[] m=a for i in range(n-1) : M=m+h res.append((h/6)*(f(m) +6*f((m+M)/2)+f(M))) m=M return res \endlisting
Les valeurs de retour de ces fonctions sont des listes contenant la valeur approché de l'intégrale sur \( [x_k ; x_{k+1}]\) . En particulier la somme de toutes les valeurs de ces listes approchent \( \dpl{\int_{a}^b f(x)\ dx}\) .
Construction des tables
Table de la loi normale.
Si \( X\sim\mathcal{N}(\mu, \sigma)\) alors \( X=\sigma Z+\mu\) où \( Z\sim\mathcal{N}(0, 1)\) est la loi normale centrée réduite. Il suffit donc de déterminer les valeurs de \( \Proba(Z\leqslant t)\) pour différente valeur de \( t\) . On observe que \( Z\) est symétrique, c'est à dire qu'il ne suffit de déterminer \( \Proba(Z\leqslant t)\) que pour des valeurs positives de \( t\) . En effet, si \( t\) est négatif on a \begin{eqnarray*} \Proba(Z\leqslant t) &=&\Proba(Z\geqslant -t)\\ &=&1-\Proba(Z\leqslant -t)\\ \end{eqnarray*} On rappel que la densité de \( Z\) est\( p(x)=\dfrac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\) . Le principe de l'algorithme est le suivant : on fixe une borne a représentant l'infini (on prendra \( 4\) car \( \Proba(Z{>}4){<}0.1\%\) il n'y a donc (presque) plus d'aire après \( 4\) ). On approche l'intégrale entre sur \( [0 ; \texttt{a}]\) par la méthode des trapèzes. On ajoute case par case les approximations retournées par la fonction ApproxIntTrapeze jusqu'à ce que l'on atteingne la valeur \( t_1\) en commençant à 0.5 (car \( \Proba(Z\leqslant 0)=0.5\) ). La fonction de répartition étant croissante il suffit d'ajouter les valeurs suivantes de la liste jusqu'à la valeur suivante \( t_2\) . Le paramètre pa, de précision d'approximation, indique le nombre de décimale que l'on souhaite voir apparaitre. \beginlisting1 def normale(x) : return (1/sqrt(2*pi))*exp(-x**2/2) def TableNormale(a, n, pa) : X=ApproxIntTrapeze(normale, 0 , a, n) case=dict() pos=0 for i in range(a*10) : case[i]=dict() for j in range(10) : if(i==0 and j==0) : case[i][j]=0.5 else : if(j==0) : case[i][j] = case[i-1][9] else : case[i][j] = case[i][j-1] while(pos/n*a
Table du \( \chi^2\) .
Dans les cas pratiques d'utilisation des lois de \( \chi^2_n\) , à \( n\) degrés de liberté, on s'intéresse à trouver \( t\) tel que \( \Proba(X\leqslant t)\simeq 0.9725\) ou \( 0.99\) . On peut démontrer via le théorème de la limite centrale que pour \( n\) suffisamment grand \( \chi^2_n\) s'approchent bien par \( \mathcal{N}(n,\sqrt{2n})\) de sorte qu'il n'est pas nécessaire d'effectuer le calcul pour de trop grande valeur de \( n\) . On choisi de ne pas aller plus loin que \( 100\) . La fonction de répartition de la loi du \( \chi^2_n\) est \( \dpl{\gamma_n(x)=c_n\int_{0}^{\frac{x}{2}}t^{\frac{n}{2}-1}e^{-t}\ dt}\) où \( c_n\) est la constante \( \dpl{\dfrac{1}{\int_0^{+\infty}t^{\frac{n}{2}-1}e^{-t}\ dt}}\) . Le principe de l'algorithme est le suivant : pour chaque de degrés de liberté deg fixés et chaque valeur val, on approche l'intégrale et on cherche la valeur de \( t\) satisfaisant \( \Proba(X\leqslant t)\simeq val\) \beginlisting1 def gamma(xmax, deg, n=10**(6)) : def f(t) : return t**(n-1) *exp(-t) return ApproxIntSimpson(f, 10**(-10), xmax, n) def TableChi2DEG(deg, VAL, n=10**(6)) : gam=gamma(150, deg/2, n) gamTOT=sum(gam) res=dict() pos=0 som=0 t=0 for val in VAL : while(som
Table de Student.
C'est le même principe que la loi du \( \chi^2_n\) sachant que la densité est \( p(x)=c_n\left(1+\dfrac{x^2}{n}\right)^{-\frac{n+1}{2}}\) où la constante \( c_n\) fait de \( p\) une fonction de densité. De même, comme pour la loi normale centrée réduite, les lois de Student sont symétriques : \( \Proba(X\leqslant -t)=1-\Proba(X\leqslant t)\) . Enfin pour \( n\) suffisamment grand la loi de Student à \( n\) degrés de liberté est approché par \( \mathcal{N}\left(n, \sqrt{\dfrac{n}{n-2}}\right)\) . \beginlisting1 def TableStudentDEG(deg, VAL, n=10**(6)) : def f(x) : return (1+x**2/deg)**(-(deg+1)/2) X=ApproxIntSimpson(f, 0 , 100, n) studentTOT=2*sum(X) student=[s/studentTOT for s in X] res=dict() pos=0 som=0.5 t=0 for val in VAL : while(som
Loi normale centrée réduite
Dans le tableau, à l'intersection de la ligne \( i\) et de la colonne \( j\) approche (assez bien) \( \Proba(Z\leqslant i+j)\) pour \( Z\sim \mathcal{N}(0, 1)\) . \[ \begin{array}{|c|*{10}{|c}|} \hline & 0.0 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 & 0.06 & 0.07 & 0.08 & 0.09 \\\hline\hline 0.0 & 0.50000 & 0.50399 & 0.50798 & 0.51197 & 0.51595 & 0.51994 & 0.52392 & 0.52790 & 0.53188 & 0.53586 \\\hline 0.1 & 0.53983 & 0.54380 & 0.54776 & 0.55172 & 0.55567 & 0.55962 & 0.56356 & 0.56749 & 0.57142 & 0.57535 \\\hline 0.2 & 0.57926 & 0.58317 & 0.58706 & 0.59095 & 0.59484 & 0.59871 & 0.60257 & 0.60642 & 0.61026 & 0.61409 \\\hline 0.3 & 0.61791 & 0.62172 & 0.62552 & 0.62930 & 0.63307 & 0.63683 & 0.64058 & 0.64431 & 0.64803 & 0.65173 \\\hline 0.4 & 0.65542 & 0.65910 & 0.66276 & 0.66640 & 0.67003 & 0.67364 & 0.67724 & 0.68082 & 0.68439 & 0.68793 \\\hline 0.5 & 0.69146 & 0.69497 & 0.69847 & 0.70194 & 0.70540 & 0.70884 & 0.71226 & 0.71566 & 0.71904 & 0.72240 \\\hline 0.6 & 0.72575 & 0.72907 & 0.73237 & 0.73565 & 0.73891 & 0.74215 & 0.74537 & 0.74857 & 0.75175 & 0.75490 \\\hline 0.7 & 0.75804 & 0.76115 & 0.76424 & 0.76730 & 0.77035 & 0.77337 & 0.77637 & 0.77935 & 0.78230 & 0.78524 \\\hline 0.8 & 0.78814 & 0.79103 & 0.79389 & 0.79673 & 0.79955 & 0.80234 & 0.80511 & 0.80785 & 0.81057 & 0.81327 \\\hline 0.9 & 0.81594 & 0.81859 & 0.82121 & 0.82381 & 0.82639 & 0.82894 & 0.83147 & 0.83398 & 0.83646 & 0.83891 \\\hline 1.0 & 0.84134 & 0.84375 & 0.84614 & 0.84849 & 0.85083 & 0.85314 & 0.85543 & 0.85769 & 0.85993 & 0.86214 \\\hline 1.1 & 0.86433 & 0.86650 & 0.86864 & 0.87076 & 0.87286 & 0.87493 & 0.87698 & 0.87900 & 0.88100 & 0.88298 \\\hline 1.2 & 0.88493 & 0.88686 & 0.88877 & 0.89065 & 0.89251 & 0.89435 & 0.89617 & 0.89796 & 0.89973 & 0.90147 \\\hline 1.3 & 0.90320 & 0.90490 & 0.90658 & 0.90824 & 0.90988 & 0.91149 & 0.91309 & 0.91466 & 0.91621 & 0.91774 \\\hline 1.4 & 0.91924 & 0.92073 & 0.92220 & 0.92364 & 0.92507 & 0.92647 & 0.92785 & 0.92922 & 0.93056 & 0.93189 \\\hline 1.5 & 0.93319 & 0.93448 & 0.93574 & 0.93699 & 0.93822 & 0.93943 & 0.94062 & 0.94179 & 0.94295 & 0.94408 \\\hline 1.6 & 0.94520 & 0.94630 & 0.94738 & 0.94845 & 0.94950 & 0.95053 & 0.95154 & 0.95254 & 0.95352 & 0.95449 \\\hline 1.7 & 0.95543 & 0.95637 & 0.95728 & 0.95818 & 0.95907 & 0.95994 & 0.96080 & 0.96164 & 0.96246 & 0.96327 \\\hline 1.8 & 0.96407 & 0.96485 & 0.96562 & 0.96638 & 0.96712 & 0.96784 & 0.96856 & 0.96926 & 0.96995 & 0.97062 \\\hline 1.9 & 0.97128 & 0.97193 & 0.97257 & 0.97320 & 0.97381 & 0.97441 & 0.97500 & 0.97558 & 0.97615 & 0.97670 \\\hline 2.0 & 0.97725 & 0.97778 & 0.97831 & 0.97882 & 0.97932 & 0.97982 & 0.98030 & 0.98077 & 0.98124 & 0.98169 \\\hline 2.1 & 0.98214 & 0.98257 & 0.98300 & 0.98341 & 0.98382 & 0.98422 & 0.98461 & 0.98500 & 0.98537 & 0.98574 \\\hline 2.2 & 0.98610 & 0.98645 & 0.98679 & 0.98713 & 0.98745 & 0.98778 & 0.98809 & 0.98840 & 0.98870 & 0.98899 \\\hline 2.3 & 0.98928 & 0.98956 & 0.98983 & 0.99010 & 0.99036 & 0.99061 & 0.99086 & 0.99111 & 0.99134 & 0.99158 \\\hline 2.4 & 0.99180 & 0.99202 & 0.99224 & 0.99245 & 0.99266 & 0.99286 & 0.99305 & 0.99324 & 0.99343 & 0.99361 \\\hline 2.5 & 0.99379 & 0.99396 & 0.99413 & 0.99430 & 0.99446 & 0.99461 & 0.99477 & 0.99492 & 0.99506 & 0.99520 \\\hline 2.6 & 0.99534 & 0.99547 & 0.99560 & 0.99573 & 0.99585 & 0.99598 & 0.99609 & 0.99621 & 0.99632 & 0.99643 \\\hline 2.7 & 0.99653 & 0.99664 & 0.99674 & 0.99683 & 0.99693 & 0.99702 & 0.99711 & 0.99720 & 0.99728 & 0.99736 \\\hline 2.8 & 0.99744 & 0.99752 & 0.99760 & 0.99767 & 0.99774 & 0.99781 & 0.99788 & 0.99795 & 0.99801 & 0.99807 \\\hline 2.9 & 0.99813 & 0.99819 & 0.99825 & 0.99831 & 0.99836 & 0.99841 & 0.99846 & 0.99851 & 0.99856 & 0.99861 \\\hline 3.0 & 0.99865 & 0.99869 & 0.99874 & 0.99878 & 0.99882 & 0.99886 & 0.99889 & 0.99893 & 0.99896 & 0.99900 \\\hline 3.1 & 0.99903 & 0.99906 & 0.99910 & 0.99913 & 0.99916 & 0.99918 & 0.99921 & 0.99924 & 0.99926 & 0.99929 \\\hline 3.2 & 0.99931 & 0.99934 & 0.99936 & 0.99938 & 0.99940 & 0.99942 & 0.99944 & 0.99946 & 0.99948 & 0.99950 \\\hline 3.3 & 0.99952 & 0.99953 & 0.99955 & 0.99957 & 0.99958 & 0.99960 & 0.99961 & 0.99962 & 0.99964 & 0.99965 \\\hline 3.4 & 0.99966 & 0.99968 & 0.99969 & 0.99970 & 0.99971 & 0.99972 & 0.99973 & 0.99974 & 0.99975 & 0.99976 \\\hline 3.5 & 0.99977 & 0.99978 & 0.99978 & 0.99979 & 0.99980 & 0.99981 & 0.99981 & 0.99982 & 0.99983 & 0.99983 \\\hline 3.6 & 0.99984 & 0.99985 & 0.99985 & 0.99986 & 0.99986 & 0.99987 & 0.99987 & 0.99988 & 0.99988 & 0.99989 \\\hline 3.7 & 0.99989 & 0.99990 & 0.99990 & 0.99990 & 0.99991 & 0.99991 & 0.99992 & 0.99992 & 0.99992 & 0.99992 \\\hline 3.8 & 0.99993 & 0.99993 & 0.99993 & 0.99994 & 0.99994 & 0.99994 & 0.99994 & 0.99995 & 0.99995 & 0.99995 \\\hline 3.9 & 0.99995 & 0.99995 & 0.99996 & 0.99996 & 0.99996 & 0.99996 & 0.99996 & 0.99996 & 0.99997 & 0.99997 \\\hline \end{array} \]
Table des lois du \( \chi^2\)
Si \( X\sim \chi^2_n\) alors dans le tableau, la valeur \( t\) à l'intersection de la ligne \( n\) et de la colonne \( m\) vérifie (assez bien) \( \Proba(X\leqslant t)=m\) . \[ \begin{array}{|c|*{ 17 }{|c}|} \hline & 0.001 & 0.005 & 0.025 & 0.05 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 0.975 & 0.995 & 0.999 \\\hline\hline 1 & 0.0 & 0.0 & 0.001 & 0.003 & 0.015 & 0.062 & 0.145 & 0.271 & 0.45 & 0.703 & 1.069 & 1.636 & 2.699 & 3.834 & 5.017 & 7.872 & 10.819 \\\hline 2 & 0.002 & 0.01 & 0.051 & 0.103 & 0.211 & 0.446 & 0.713 & 1.022 & 1.386 & 1.833 & 2.408 & 3.219 & 4.605 & 5.991 & 7.378 & 10.597 & 13.816 \\\hline 3 & 0.024 & 0.072 & 0.216 & 0.352 & 0.584 & 1.005 & 1.424 & 1.869 & 2.366 & 2.946 & 3.665 & 4.642 & 6.251 & 7.815 & 9.348 & 12.838 & 16.266 \\\hline 4 & 0.091 & 0.207 & 0.484 & 0.711 & 1.064 & 1.649 & 2.195 & 2.753 & 3.357 & 4.045 & 4.878 & 5.989 & 7.779 & 9.488 & 11.143 & 14.86 & 18.467 \\\hline 5 & 0.21 & 0.412 & 0.831 & 1.145 & 1.61 & 2.343 & 3.0 & 3.656 & 4.351 & 5.132 & 6.064 & 7.289 & 9.236 & 11.07 & 12.833 & 16.75 & 20.515 \\\hline 6 & 0.381 & 0.676 & 1.237 & 1.635 & 2.204 & 3.07 & 3.828 & 4.57 & 5.348 & 6.211 & 7.231 & 8.558 & 10.645 & 12.592 & 14.449 & 18.548 & 22.458 \\\hline 7 & 0.598 & 0.989 & 1.69 & 2.167 & 2.833 & 3.822 & 4.671 & 5.493 & 6.346 & 7.283 & 8.383 & 9.803 & 12.017 & 14.067 & 16.013 & 20.278 & 24.322 \\\hline 8 & 0.857 & 1.344 & 2.18 & 2.733 & 3.49 & 4.594 & 5.527 & 6.423 & 7.344 & 8.351 & 9.524 & 11.03 & 13.362 & 15.507 & 17.535 & 21.955 & 26.124 \\\hline 9 & 1.152 & 1.735 & 2.7 & 3.325 & 4.168 & 5.38 & 6.393 & 7.357 & 8.343 & 9.414 & 10.656 & 12.242 & 14.684 & 16.919 & 19.023 & 23.589 & 27.877 \\\hline 10 & 1.479 & 2.156 & 3.247 & 3.94 & 4.865 & 6.179 & 7.267 & 8.295 & 9.342 & 10.473 & 11.781 & 13.442 & 15.987 & 18.307 & 20.483 & 25.188 & 29.588 \\\hline 11 & 1.834 & 2.603 & 3.816 & 4.575 & 5.578 & 6.989 & 8.148 & 9.237 & 10.341 & 11.53 & 12.899 & 14.631 & 17.275 & 19.675 & 21.92 & 26.757 & 31.264 \\\hline 12 & 2.214 & 3.074 & 4.404 & 5.226 & 6.304 & 7.807 & 9.034 & 10.182 & 11.34 & 12.584 & 14.011 & 15.812 & 18.549 & 21.026 & 23.337 & 28.3 & 32.909 \\\hline 13 & 2.617 & 3.565 & 5.009 & 5.892 & 7.042 & 8.634 & 9.926 & 11.129 & 12.34 & 13.636 & 15.119 & 16.985 & 19.812 & 22.362 & 24.736 & 29.819 & 34.528 \\\hline 14 & 3.041 & 4.075 & 5.629 & 6.571 & 7.79 & 9.467 & 10.821 & 12.078 & 13.339 & 14.685 & 16.222 & 18.151 & 21.064 & 23.685 & 26.119 & 31.319 & 36.123 \\\hline 15 & 3.483 & 4.601 & 6.262 & 7.261 & 8.547 & 10.307 & 11.721 & 13.03 & 14.339 & 15.733 & 17.322 & 19.311 & 22.307 & 24.996 & 27.488 & 32.801 & 37.697 \\\hline 16 & 3.942 & 5.142 & 6.908 & 7.962 & 9.312 & 11.152 & 12.624 & 13.983 & 15.339 & 16.78 & 18.418 & 20.465 & 23.542 & 26.296 & 28.845 & 34.267 & 39.252 \\\hline 17 & 4.416 & 5.697 & 7.564 & 8.672 & 10.085 & 12.002 & 13.531 & 14.937 & 16.338 & 17.824 & 19.511 & 21.615 & 24.769 & 27.587 & 30.191 & 35.718 & 40.79 \\\hline 18 & 4.905 & 6.265 & 8.231 & 9.39 & 10.865 & 12.857 & 14.44 & 15.893 & 17.338 & 18.868 & 20.601 & 22.76 & 25.989 & 28.869 & 31.526 & 37.156 & 42.312 \\\hline 19 & 5.407 & 6.844 & 8.907 & 10.117 & 11.651 & 13.716 & 15.352 & 16.85 & 18.338 & 19.91 & 21.689 & 23.9 & 27.204 & 30.144 & 32.852 & 38.582 & 43.82 \\\hline 20 & 5.921 & 7.434 & 9.591 & 10.851 & 12.443 & 14.578 & 16.266 & 17.809 & 19.337 & 20.951 & 22.775 & 25.038 & 28.412 & 31.41 & 34.17 & 39.997 & 45.315 \\\hline 21 & 6.447 & 8.034 & 10.283 & 11.591 & 13.24 & 15.445 & 17.182 & 18.768 & 20.337 & 21.992 & 23.858 & 26.171 & 29.615 & 32.671 & 35.479 & 41.401 & 46.797 \\\hline 22 & 6.983 & 8.643 & 10.982 & 12.338 & 14.042 & 16.314 & 18.101 & 19.729 & 21.337 & 23.031 & 24.939 & 27.301 & 30.813 & 33.924 & 36.781 & 42.796 & 48.268 \\\hline 23 & 7.529 & 9.26 & 11.689 & 13.091 & 14.848 & 17.187 & 19.021 & 20.69 & 22.337 & 24.069 & 26.018 & 28.429 & 32.007 & 35.172 & 38.076 & 44.181 & 49.728 \\\hline 24 & 8.085 & 9.886 & 12.401 & 13.848 & 15.659 & 18.062 & 19.943 & 21.652 & 23.337 & 25.106 & 27.096 & 29.553 & 33.196 & 36.415 & 39.364 & 45.559 & 51.179 \\\hline 25 & 8.649 & 10.52 & 13.12 & 14.611 & 16.473 & 18.94 & 20.867 & 22.616 & 24.337 & 26.143 & 28.172 & 30.675 & 34.382 & 37.652 & 40.646 & 46.928 & 52.62 \\\hline \end{array} \] \[ \begin{array}{|c|*{ 17 }{|c}|} \hline & 0.001 & 0.005 & 0.025 & 0.05 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 0.975 & 0.995 & 0.999 \\\hline\hline 26 & 9.222 & 11.16 & 13.844 & 15.379 & 17.292 & 19.82 & 21.792 & 23.579 & 25.336 & 27.179 & 29.246 & 31.795 & 35.563 & 38.885 & 41.923 & 48.29 & 54.052 \\\hline 27 & 9.803 & 11.808 & 14.573 & 16.151 & 18.114 & 20.703 & 22.719 & 24.544 & 26.336 & 28.214 & 30.319 & 32.912 & 36.741 & 40.113 & 43.195 & 49.645 & 55.476 \\\hline 28 & 10.391 & 12.461 & 15.308 & 16.928 & 18.939 & 21.588 & 23.647 & 25.509 & 27.336 & 29.249 & 31.391 & 34.027 & 37.916 & 41.337 & 44.461 & 50.993 & 56.892 \\\hline 29 & 10.986 & 13.121 & 16.047 & 17.708 & 19.768 & 22.475 & 24.577 & 26.475 & 28.336 & 30.283 & 32.461 & 35.139 & 39.087 & 42.557 & 45.722 & 52.336 & 58.301 \\\hline 30 & 11.588 & 13.787 & 16.791 & 18.493 & 20.599 & 23.364 & 25.508 & 27.442 & 29.336 & 31.316 & 33.53 & 36.25 & 40.256 & 43.773 & 46.979 & 53.672 & 59.703 \\\hline 31 & 12.196 & 14.458 & 17.539 & 19.281 & 21.434 & 24.255 & 26.44 & 28.409 & 30.336 & 32.349 & 34.598 & 37.359 & 41.422 & 44.985 & 48.232 & 55.003 & 61.098 \\\hline 32 & 12.811 & 15.134 & 18.291 & 20.072 & 22.271 & 25.148 & 27.373 & 29.376 & 31.336 & 33.381 & 35.665 & 38.466 & 42.585 & 46.194 & 49.48 & 56.328 & 62.487 \\\hline 33 & 13.431 & 15.815 & 19.047 & 20.867 & 23.11 & 26.042 & 28.307 & 30.344 & 32.336 & 34.413 & 36.731 & 39.572 & 43.745 & 47.4 & 50.725 & 57.648 & 63.87 \\\hline 34 & 14.057 & 16.501 & 19.806 & 21.664 & 23.952 & 26.938 & 29.242 & 31.313 & 33.336 & 35.444 & 37.795 & 40.676 & 44.903 & 48.602 & 51.966 & 58.964 & 65.247 \\\hline 35 & 14.688 & 17.192 & 20.569 & 22.465 & 24.797 & 27.836 & 30.178 & 32.282 & 34.336 & 36.475 & 38.859 & 41.778 & 46.059 & 49.802 & 53.203 & 60.275 & 66.619 \\\hline 36 & 15.324 & 17.887 & 21.336 & 23.269 & 25.643 & 28.735 & 31.115 & 33.252 & 35.336 & 37.505 & 39.922 & 42.879 & 47.212 & 50.998 & 54.437 & 61.581 & 67.985 \\\hline 37 & 15.965 & 18.586 & 22.106 & 24.075 & 26.492 & 29.635 & 32.053 & 34.222 & 36.336 & 38.535 & 40.984 & 43.978 & 48.363 & 52.192 & 55.668 & 62.883 & 69.346 \\\hline 38 & 16.611 & 19.289 & 22.878 & 24.884 & 27.343 & 30.537 & 32.992 & 35.192 & 37.335 & 39.564 & 42.045 & 45.076 & 49.513 & 53.384 & 56.896 & 64.181 & 70.703 \\\hline 39 & 17.262 & 19.996 & 23.654 & 25.695 & 28.196 & 31.441 & 33.932 & 36.163 & 38.335 & 40.593 & 43.105 & 46.173 & 50.66 & 54.572 & 58.12 & 65.476 & 72.055 \\\hline 40 & 17.916 & 20.707 & 24.433 & 26.509 & 29.051 & 32.345 & 34.872 & 37.134 & 39.335 & 41.622 & 44.165 & 47.269 & 51.805 & 55.758 & 59.342 & 66.766 & 73.402 \\\hline 41 & 18.575 & 21.421 & 25.215 & 27.326 & 29.907 & 33.251 & 35.813 & 38.106 & 40.335 & 42.651 & 45.224 & 48.363 & 52.949 & 56.942 & 60.561 & 68.053 & 74.745 \\\hline 42 & 19.239 & 22.138 & 25.999 & 28.144 & 30.765 & 34.157 & 36.755 & 39.077 & 41.335 & 43.679 & 46.282 & 49.456 & 54.09 & 58.124 & 61.777 & 69.336 & 76.084 \\\hline 43 & 19.906 & 22.859 & 26.785 & 28.965 & 31.625 & 35.065 & 37.698 & 40.05 & 42.335 & 44.706 & 47.339 & 50.548 & 55.23 & 59.304 & 62.99 & 70.616 & 77.419 \\\hline 44 & 20.576 & 23.584 & 27.575 & 29.787 & 32.487 & 35.974 & 38.641 & 41.022 & 43.335 & 45.734 & 48.396 & 51.639 & 56.369 & 60.481 & 64.201 & 71.893 & 78.75 \\\hline 45 & 21.251 & 24.311 & 28.366 & 30.612 & 33.35 & 36.884 & 39.585 & 41.995 & 44.335 & 46.761 & 49.452 & 52.729 & 57.505 & 61.656 & 65.41 & 73.166 & 80.077 \\\hline 46 & 21.929 & 25.041 & 29.16 & 31.439 & 34.215 & 37.795 & 40.529 & 42.968 & 45.335 & 47.787 & 50.507 & 53.818 & 58.641 & 62.83 & 66.617 & 74.437 & 81.4 \\\hline 47 & 22.61 & 25.775 & 29.956 & 32.268 & 35.081 & 38.708 & 41.474 & 43.942 & 46.335 & 48.814 & 51.562 & 54.906 & 59.774 & 64.001 & 67.821 & 75.704 & 82.72 \\\hline 48 & 23.295 & 26.511 & 30.755 & 33.098 & 35.949 & 39.621 & 42.42 & 44.915 & 47.335 & 49.84 & 52.616 & 55.993 & 60.907 & 65.171 & 69.023 & 76.969 & 84.037 \\\hline 49 & 23.983 & 27.249 & 31.555 & 33.93 & 36.818 & 40.534 & 43.366 & 45.889 & 48.335 & 50.866 & 53.67 & 57.079 & 62.038 & 66.339 & 70.222 & 78.231 & 85.351 \\\hline 50 & 24.674 & 27.991 & 32.357 & 34.764 & 37.689 & 41.449 & 44.313 & 46.864 & 49.335 & 51.892 & 54.723 & 58.164 & 63.167 & 67.505 & 71.42 & 79.49 & 86.661 \\\hline \end{array} \] \[ \begin{array}{|c|*{ 17 }{|c}|} \hline & 0.001 & 0.005 & 0.025 & 0.05 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 0.975 & 0.995 & 0.999 \\\hline\hline 51 & 25.368 & 28.735 & 33.162 & 35.6 & 38.56 & 42.365 & 45.261 & 47.838 & 50.335 & 52.917 & 55.775 & 59.248 & 64.295 & 68.669 & 72.616 & 80.747 & 87.968 \\\hline 52 & 26.065 & 29.481 & 33.968 & 36.437 & 39.433 & 43.281 & 46.209 & 48.813 & 51.335 & 53.942 & 56.827 & 60.332 & 65.422 & 69.832 & 73.81 & 82.001 & 89.272 \\\hline 53 & 26.765 & 30.23 & 34.776 & 37.276 & 40.308 & 44.199 & 47.157 & 49.788 & 52.335 & 54.967 & 57.879 & 61.414 & 66.548 & 70.993 & 75.002 & 83.253 & 90.573 \\\hline 54 & 27.468 & 30.981 & 35.586 & 38.116 & 41.183 & 45.117 & 48.106 & 50.764 & 53.335 & 55.992 & 58.93 & 62.496 & 67.673 & 72.153 & 76.192 & 84.502 & 91.872 \\\hline 55 & 28.173 & 31.735 & 36.398 & 38.958 & 42.06 & 46.036 & 49.055 & 51.739 & 54.335 & 57.016 & 59.98 & 63.577 & 68.796 & 73.311 & 77.38 & 85.749 & 93.168 \\\hline 56 & 28.881 & 32.49 & 37.212 & 39.801 & 42.937 & 46.955 & 50.005 & 52.715 & 55.335 & 58.04 & 61.031 & 64.658 & 69.919 & 74.468 & 78.567 & 86.994 & 94.461 \\\hline 57 & 29.592 & 33.248 & 38.027 & 40.646 & 43.816 & 47.876 & 50.956 & 53.691 & 56.335 & 59.064 & 62.08 & 65.737 & 71.04 & 75.624 & 79.752 & 88.236 & 95.751 \\\hline 58 & 30.305 & 34.008 & 38.844 & 41.492 & 44.696 & 48.797 & 51.906 & 54.667 & 57.335 & 60.088 & 63.129 & 66.816 & 72.16 & 76.778 & 80.936 & 89.477 & 97.039 \\\hline 59 & 31.02 & 34.77 & 39.662 & 42.339 & 45.577 & 49.718 & 52.858 & 55.643 & 58.335 & 61.112 & 64.178 & 67.894 & 73.279 & 77.931 & 82.117 & 90.715 & 98.324 \\\hline 60 & 31.738 & 35.535 & 40.482 & 43.188 & 46.459 & 50.641 & 53.809 & 56.62 & 59.335 & 62.135 & 65.227 & 68.972 & 74.397 & 79.082 & 83.298 & 91.952 & 99.607 \\\hline 61 & 32.459 & 36.301 & 41.303 & 44.038 & 47.342 & 51.564 & 54.761 & 57.597 & 60.335 & 63.158 & 66.274 & 70.049 & 75.514 & 80.232 & 84.476 & 93.186 & 100.888 \\\hline 62 & 33.181 & 37.068 & 42.126 & 44.889 & 48.226 & 52.487 & 55.714 & 58.574 & 61.335 & 64.181 & 67.322 & 71.125 & 76.63 & 81.381 & 85.654 & 94.419 & 102.166 \\\hline 63 & 33.906 & 37.838 & 42.95 & 45.741 & 49.111 & 53.412 & 56.666 & 59.551 & 62.335 & 65.204 & 68.369 & 72.201 & 77.745 & 82.529 & 86.83 & 95.649 & 103.442 \\\hline 64 & 34.633 & 38.61 & 43.776 & 46.595 & 49.996 & 54.337 & 57.62 & 60.528 & 63.335 & 66.226 & 69.416 & 73.276 & 78.86 & 83.675 & 88.004 & 96.878 & 104.716 \\\hline 65 & 35.362 & 39.383 & 44.603 & 47.45 & 50.883 & 55.262 & 58.573 & 61.506 & 64.335 & 67.249 & 70.462 & 74.351 & 79.973 & 84.821 & 89.177 & 98.105 & 105.988 \\\hline 66 & 36.093 & 40.158 & 45.431 & 48.305 & 51.77 & 56.188 & 59.527 & 62.484 & 65.335 & 68.271 & 71.508 & 75.424 & 81.085 & 85.965 & 90.349 & 99.33 & 107.258 \\\hline 67 & 36.826 & 40.935 & 46.261 & 49.162 & 52.659 & 57.115 & 60.481 & 63.461 & 66.335 & 69.293 & 72.554 & 76.498 & 82.197 & 87.108 & 91.519 & 100.554 & 108.526 \\\hline 68 & 37.561 & 41.713 & 47.092 & 50.02 & 53.548 & 58.042 & 61.436 & 64.44 & 67.335 & 70.315 & 73.6 & 77.571 & 83.308 & 88.25 & 92.689 & 101.776 & 109.791 \\\hline 69 & 38.298 & 42.494 & 47.924 & 50.879 & 54.438 & 58.97 & 62.391 & 65.418 & 68.335 & 71.337 & 74.645 & 78.643 & 84.418 & 89.391 & 93.856 & 102.996 & 111.055 \\\hline 70 & 39.036 & 43.275 & 48.758 & 51.739 & 55.329 & 59.898 & 63.346 & 66.396 & 69.334 & 72.358 & 75.689 & 79.715 & 85.527 & 90.531 & 95.023 & 104.215 & 112.317 \\\hline 71 & 39.777 & 44.058 & 49.592 & 52.6 & 56.221 & 60.827 & 64.302 & 67.375 & 70.334 & 73.38 & 76.734 & 80.786 & 86.635 & 91.67 & 96.189 & 105.432 & 113.577 \\\hline 72 & 40.519 & 44.843 & 50.428 & 53.462 & 57.113 & 61.756 & 65.258 & 68.353 & 71.334 & 74.401 & 77.778 & 81.857 & 87.743 & 92.808 & 97.353 & 106.648 & 114.835 \\\hline 73 & 41.264 & 45.629 & 51.265 & 54.325 & 58.006 & 62.686 & 66.214 & 69.332 & 72.334 & 75.422 & 78.822 & 82.927 & 88.85 & 93.945 & 98.516 & 107.862 & 116.092 \\\hline 74 & 42.01 & 46.417 & 52.103 & 55.189 & 58.9 & 63.616 & 67.17 & 70.311 & 73.334 & 76.443 & 79.865 & 83.997 & 89.956 & 95.081 & 99.678 & 109.074 & 117.346 \\\hline 75 & 42.757 & 47.206 & 52.942 & 56.054 & 59.795 & 64.547 & 68.127 & 71.29 & 74.334 & 77.464 & 80.908 & 85.066 & 91.061 & 96.217 & 100.839 & 110.286 & 118.599 \\\hline \end{array} \] \[ \begin{array}{|c|*{ 17 }{|c}|} \hline & 0.001 & 0.005 & 0.025 & 0.05 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 0.975 & 0.995 & 0.999 \\\hline\hline 76 & 43.507 & 47.997 & 53.782 & 56.92 & 60.69 & 65.478 & 69.084 & 72.27 & 75.334 & 78.485 & 81.951 & 86.135 & 92.166 & 97.351 & 101.999 & 111.495 & 119.85 \\\hline 77 & 44.258 & 48.788 & 54.623 & 57.786 & 61.586 & 66.409 & 70.042 & 73.249 & 76.334 & 79.505 & 82.994 & 87.203 & 93.27 & 98.484 & 103.158 & 112.704 & 121.1 \\\hline 78 & 45.01 & 49.582 & 55.466 & 58.654 & 62.483 & 67.341 & 70.999 & 74.228 & 77.334 & 80.526 & 84.036 & 88.271 & 94.374 & 99.617 & 104.316 & 113.911 & 122.348 \\\hline 79 & 45.764 & 50.376 & 56.309 & 59.522 & 63.38 & 68.274 & 71.957 & 75.208 & 78.334 & 81.546 & 85.078 & 89.338 & 95.476 & 100.749 & 105.473 & 115.117 & 123.594 \\\hline 80 & 46.52 & 51.172 & 57.153 & 60.391 & 64.278 & 69.207 & 72.915 & 76.188 & 79.334 & 82.566 & 86.12 & 90.405 & 96.578 & 101.879 & 106.629 & 116.321 & 124.839 \\\hline 81 & 47.277 & 51.969 & 57.998 & 61.261 & 65.176 & 70.14 & 73.874 & 77.168 & 80.334 & 83.586 & 87.161 & 91.472 & 97.68 & 103.01 & 107.783 & 117.524 & 126.083 \\\hline 82 & 48.036 & 52.767 & 58.845 & 62.132 & 66.076 & 71.074 & 74.833 & 78.148 & 81.334 & 84.606 & 88.202 & 92.538 & 98.78 & 104.139 & 108.937 & 118.726 & 127.324 \\\hline 83 & 48.796 & 53.567 & 59.692 & 63.004 & 66.976 & 72.008 & 75.792 & 79.128 & 82.334 & 85.626 & 89.243 & 93.604 & 99.88 & 105.267 & 110.09 & 119.927 & 128.565 \\\hline 84 & 49.557 & 54.368 & 60.54 & 63.876 & 67.876 & 72.943 & 76.751 & 80.108 & 83.334 & 86.646 & 90.284 & 94.669 & 100.98 & 106.395 & 111.242 & 121.126 & 129.804 \\\hline 85 & 50.32 & 55.17 & 61.389 & 64.749 & 68.777 & 73.878 & 77.71 & 81.089 & 84.334 & 87.665 & 91.325 & 95.734 & 102.079 & 107.522 & 112.393 & 122.325 & 131.041 \\\hline 86 & 51.085 & 55.973 & 62.239 & 65.623 & 69.679 & 74.813 & 78.67 & 82.069 & 85.334 & 88.685 & 92.365 & 96.799 & 103.177 & 108.648 & 113.544 & 123.522 & 132.277 \\\hline 87 & 51.85 & 56.777 & 63.089 & 66.498 & 70.581 & 75.749 & 79.63 & 83.05 & 86.334 & 89.704 & 93.405 & 97.863 & 104.275 & 109.773 & 114.693 & 124.718 & 133.512 \\\hline 88 & 52.617 & 57.582 & 63.941 & 67.373 & 71.484 & 76.685 & 80.59 & 84.031 & 87.334 & 90.723 & 94.445 & 98.927 & 105.372 & 110.898 & 115.841 & 125.913 & 134.745 \\\hline 89 & 53.386 & 58.389 & 64.793 & 68.249 & 72.387 & 77.622 & 81.55 & 85.012 & 88.334 & 91.742 & 95.484 & 99.991 & 106.469 & 112.022 & 116.989 & 127.106 & 135.978 \\\hline 90 & 54.155 & 59.196 & 65.647 & 69.126 & 73.291 & 78.558 & 82.511 & 85.993 & 89.334 & 92.761 & 96.524 & 101.054 & 107.565 & 113.145 & 118.136 & 128.299 & 137.208 \\\hline 91 & 54.926 & 60.005 & 66.501 & 70.003 & 74.196 & 79.496 & 83.472 & 86.974 & 90.334 & 93.78 & 97.563 & 102.117 & 108.661 & 114.268 & 119.282 & 129.491 & 138.438 \\\hline 92 & 55.698 & 60.815 & 67.356 & 70.882 & 75.1 & 80.433 & 84.433 & 87.955 & 91.334 & 94.799 & 98.602 & 103.179 & 109.756 & 115.39 & 120.427 & 130.681 & 139.666 \\\hline 93 & 56.472 & 61.625 & 68.211 & 71.76 & 76.006 & 81.371 & 85.394 & 88.936 & 92.334 & 95.818 & 99.641 & 104.241 & 110.85 & 116.511 & 121.571 & 131.871 & 140.893 \\\hline 94 & 57.246 & 62.437 & 69.068 & 72.64 & 76.912 & 82.309 & 86.356 & 89.918 & 93.334 & 96.836 & 100.679 & 105.303 & 111.944 & 117.632 & 122.715 & 133.059 & 142.119 \\\hline 95 & 58.022 & 63.25 & 69.925 & 73.52 & 77.818 & 83.248 & 87.318 & 90.899 & 94.334 & 97.855 & 101.717 & 106.364 & 113.038 & 118.752 & 123.858 & 134.247 & 143.344 \\\hline 96 & 58.799 & 64.063 & 70.783 & 74.401 & 78.725 & 84.187 & 88.279 & 91.881 & 95.334 & 98.873 & 102.755 & 107.425 & 114.131 & 119.871 & 125.0 & 135.433 & 144.567 \\\hline 97 & 59.577 & 64.878 & 71.642 & 75.282 & 79.633 & 85.126 & 89.241 & 92.862 & 96.334 & 99.892 & 103.793 & 108.486 & 115.223 & 120.99 & 126.141 & 136.619 & 145.789 \\\hline 98 & 60.356 & 65.694 & 72.501 & 76.164 & 80.541 & 86.065 & 90.204 & 93.844 & 97.334 & 100.91 & 104.831 & 109.547 & 116.315 & 122.108 & 127.282 & 137.803 & 147.01 \\\hline 99 & 61.137 & 66.51 & 73.361 & 77.046 & 81.449 & 87.005 & 91.166 & 94.826 & 98.334 & 101.928 & 105.868 & 110.607 & 117.407 & 123.225 & 128.422 & 138.987 & 148.23 \\\hline 100 & 61.918 & 67.328 & 74.222 & 77.929 & 82.358 & 87.945 & 92.129 & 95.808 & 99.334 & 102.946 & 106.906 & 111.667 & 118.498 & 124.342 & 129.561 & 140.169 & 149.449 \\\hline \end{array} \]
Table des lois de Student
Si \( X\sim \mathcal{T}_n\) alors dans le tableau, la valeur \( t\) à l'intersection de la ligne \( n\) et de la colonne \( m\) vérifie (assez bien) \( \Proba(X\leqslant t)=m\) . \[ \begin{array}{|c|*{ 9 }{|c}|} \hline & 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 0.975 & 0.99 & 0.995 & 0.999 \\\hline\hline 1 & 0.3227 & 0.7205 & 1.3593 & 2.9967 & 5.969 & 11.3414 & 24.3062 & 39.1924 & 76.7861 \\\hline 2 & 0.2878 & 0.6152 & 1.0561 & 1.8713 & 2.8783 & 4.1854 & 6.5232 & 8.7779 & 14.453 \\\hline 3 & 0.2766 & 0.5842 & 0.978 & 1.6365 & 2.3502 & 3.1746 & 4.5147 & 5.7766 & 9.7132 \\\hline 4 & 0.2707 & 0.5686 & 0.9409 & 1.5331 & 2.1315 & 2.7756 & 3.7444 & 4.5982 & 7.1307 \\\hline 5 & 0.2672 & 0.5594 & 0.9195 & 1.4759 & 2.015 & 2.5705 & 3.3646 & 4.0314 & 5.8885 \\\hline 6 & 0.2648 & 0.5534 & 0.9057 & 1.4398 & 1.9432 & 2.4469 & 3.1426 & 3.7073 & 5.2069 \\\hline 7 & 0.2632 & 0.5491 & 0.896 & 1.4149 & 1.8946 & 2.3646 & 2.998 & 3.4995 & 4.7852 \\\hline 8 & 0.2619 & 0.5459 & 0.8889 & 1.3968 & 1.8595 & 2.306 & 2.8965 & 3.3554 & 4.5008 \\\hline 9 & 0.261 & 0.5435 & 0.8834 & 1.383 & 1.8331 & 2.2622 & 2.8214 & 3.2498 & 4.2968 \\\hline 10 & 0.2602 & 0.5415 & 0.8791 & 1.3722 & 1.8125 & 2.2281 & 2.7638 & 3.1693 & 4.1437 \\\hline 11 & 0.2596 & 0.5399 & 0.8755 & 1.3634 & 1.7959 & 2.201 & 2.7181 & 3.1058 & 4.0247 \\\hline 12 & 0.259 & 0.5386 & 0.8726 & 1.3562 & 1.7823 & 2.1788 & 2.681 & 3.0546 & 3.9296 \\\hline 13 & 0.2586 & 0.5375 & 0.8702 & 1.3502 & 1.771 & 2.1604 & 2.6503 & 3.0123 & 3.852 \\\hline 14 & 0.2582 & 0.5366 & 0.8681 & 1.345 & 1.7613 & 2.1448 & 2.6245 & 2.9768 & 3.7874 \\\hline 15 & 0.2579 & 0.5357 & 0.8662 & 1.3406 & 1.7531 & 2.1315 & 2.6025 & 2.9467 & 3.7328 \\\hline 16 & 0.2576 & 0.535 & 0.8647 & 1.3368 & 1.7459 & 2.1199 & 2.5835 & 2.9208 & 3.6862 \\\hline 17 & 0.2574 & 0.5344 & 0.8633 & 1.3334 & 1.7396 & 2.1098 & 2.5669 & 2.8982 & 3.6458 \\\hline 18 & 0.2571 & 0.5338 & 0.862 & 1.3304 & 1.7341 & 2.1009 & 2.5524 & 2.8784 & 3.6105 \\\hline 19 & 0.2569 & 0.5333 & 0.861 & 1.3277 & 1.7291 & 2.093 & 2.5395 & 2.8609 & 3.5794 \\\hline 20 & 0.2567 & 0.5329 & 0.86 & 1.3253 & 1.7247 & 2.086 & 2.528 & 2.8453 & 3.5518 \\\hline 21 & 0.2566 & 0.5325 & 0.8591 & 1.3232 & 1.7208 & 2.0796 & 2.5177 & 2.8314 & 3.5272 \\\hline 22 & 0.2564 & 0.5321 & 0.8583 & 1.3212 & 1.7172 & 2.0739 & 2.5083 & 2.8188 & 3.505 \\\hline 23 & 0.2563 & 0.5318 & 0.8575 & 1.3195 & 1.7139 & 2.0687 & 2.4999 & 2.8073 & 3.485 \\\hline 24 & 0.2562 & 0.5314 & 0.8569 & 1.3178 & 1.7109 & 2.0639 & 2.4922 & 2.797 & 3.4668 \\\hline 25 & 0.2561 & 0.5312 & 0.8563 & 1.3164 & 1.7082 & 2.0595 & 2.4851 & 2.7875 & 3.4502 \\\hline 26 & 0.256 & 0.5309 & 0.8557 & 1.315 & 1.7056 & 2.0555 & 2.4786 & 2.7787 & 3.435 \\\hline 27 & 0.2559 & 0.5307 & 0.8552 & 1.3137 & 1.7033 & 2.0518 & 2.4727 & 2.7707 & 3.421 \\\hline 28 & 0.2558 & 0.5304 & 0.8547 & 1.3125 & 1.7011 & 2.0484 & 2.4671 & 2.7633 & 3.4082 \\\hline 29 & 0.2557 & 0.5302 & 0.8542 & 1.3114 & 1.6991 & 2.0452 & 2.462 & 2.7564 & 3.3962 \\\hline 30 & 0.2556 & 0.53 & 0.8538 & 1.3104 & 1.6973 & 2.0423 & 2.4573 & 2.75 & 3.3852 \\\hline 31 & 0.2555 & 0.5299 & 0.8534 & 1.3095 & 1.6955 & 2.0395 & 2.4528 & 2.7441 & 3.3749 \\\hline 32 & 0.2555 & 0.5297 & 0.853 & 1.3086 & 1.6939 & 2.037 & 2.4487 & 2.7385 & 3.3653 \\\hline 33 & 0.2554 & 0.5295 & 0.8527 & 1.3078 & 1.6924 & 2.0345 & 2.4448 & 2.7333 & 3.3563 \\\hline 34 & 0.2553 & 0.5294 & 0.8523 & 1.307 & 1.6909 & 2.0323 & 2.4412 & 2.7284 & 3.348 \\\hline 35 & 0.2553 & 0.5292 & 0.852 & 1.3062 & 1.6896 & 2.0301 & 2.4377 & 2.7238 & 3.34 \\\hline 36 & 0.2552 & 0.5291 & 0.8517 & 1.3055 & 1.6883 & 2.0281 & 2.4345 & 2.7195 & 3.3326 \\\hline 37 & 0.2552 & 0.529 & 0.8514 & 1.3049 & 1.6871 & 2.0262 & 2.4314 & 2.7154 & 3.3256 \\\hline 38 & 0.2551 & 0.5288 & 0.8512 & 1.3042 & 1.686 & 2.0244 & 2.4286 & 2.7116 & 3.319 \\\hline 39 & 0.2551 & 0.5287 & 0.851 & 1.3036 & 1.6849 & 2.0227 & 2.4258 & 2.7079 & 3.3128 \\\hline 40 & 0.2551 & 0.5286 & 0.8507 & 1.3031 & 1.6839 & 2.0211 & 2.4233 & 2.7045 & 3.3069 \\\hline \end{array} \] \[ \begin{array}{|c|*{ 9 }{|c}|} \hline & 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 0.975 & 0.99 & 0.995 & 0.999 \\\hline\hline 41 & 0.255 & 0.5285 & 0.8505 & 1.3025 & 1.6829 & 2.0195 & 2.4208 & 2.7012 & 3.3013 \\\hline 42 & 0.255 & 0.5284 & 0.8503 & 1.3021 & 1.682 & 2.0181 & 2.4185 & 2.6981 & 3.296 \\\hline 43 & 0.2549 & 0.5283 & 0.8501 & 1.3016 & 1.6811 & 2.0167 & 2.4163 & 2.6951 & 3.2909 \\\hline 44 & 0.2549 & 0.5282 & 0.8499 & 1.3011 & 1.6802 & 2.0154 & 2.4141 & 2.6923 & 3.2861 \\\hline 45 & 0.2549 & 0.5281 & 0.8497 & 1.3007 & 1.6794 & 2.0141 & 2.4121 & 2.6896 & 3.2815 \\\hline 46 & 0.2548 & 0.5281 & 0.8495 & 1.3002 & 1.6787 & 2.0129 & 2.4102 & 2.687 & 3.2771 \\\hline 47 & 0.2548 & 0.528 & 0.8493 & 1.2998 & 1.6779 & 2.0118 & 2.4084 & 2.6846 & 3.2729 \\\hline 48 & 0.2548 & 0.5279 & 0.8492 & 1.2994 & 1.6772 & 2.0106 & 2.4066 & 2.6822 & 3.2689 \\\hline 49 & 0.2547 & 0.5278 & 0.849 & 1.2991 & 1.6766 & 2.0096 & 2.4049 & 2.68 & 3.2651 \\\hline 50 & 0.2547 & 0.5278 & 0.8489 & 1.2987 & 1.6759 & 2.0086 & 2.4033 & 2.6778 & 3.2614 \\\hline 51 & 0.2547 & 0.5277 & 0.8487 & 1.2984 & 1.6753 & 2.0076 & 2.4017 & 2.6757 & 3.2579 \\\hline 52 & 0.2547 & 0.5276 & 0.8486 & 1.2981 & 1.6747 & 2.0066 & 2.4002 & 2.6737 & 3.2545 \\\hline 53 & 0.2546 & 0.5276 & 0.8485 & 1.2977 & 1.6741 & 2.0058 & 2.3988 & 2.6718 & 3.2513 \\\hline 54 & 0.2546 & 0.5275 & 0.8483 & 1.2974 & 1.6736 & 2.0049 & 2.3974 & 2.67 & 3.2482 \\\hline 55 & 0.2546 & 0.5275 & 0.8482 & 1.2971 & 1.673 & 2.0041 & 2.3961 & 2.6682 & 3.2452 \\\hline 56 & 0.2546 & 0.5274 & 0.8481 & 1.2969 & 1.6725 & 2.0032 & 2.3948 & 2.6665 & 3.2423 \\\hline 57 & 0.2545 & 0.5274 & 0.848 & 1.2966 & 1.672 & 2.0025 & 2.3936 & 2.6649 & 3.2395 \\\hline 58 & 0.2545 & 0.5273 & 0.8479 & 1.2963 & 1.6716 & 2.0017 & 2.3924 & 2.6633 & 3.2368 \\\hline 59 & 0.2545 & 0.5272 & 0.8478 & 1.2961 & 1.6711 & 2.001 & 2.3912 & 2.6618 & 3.2342 \\\hline 60 & 0.2545 & 0.5272 & 0.8477 & 1.2958 & 1.6707 & 2.0003 & 2.3901 & 2.6603 & 3.2317 \\\hline 61 & 0.2545 & 0.5272 & 0.8476 & 1.2956 & 1.6702 & 1.9996 & 2.3891 & 2.6589 & 3.2293 \\\hline 62 & 0.2544 & 0.5271 & 0.8475 & 1.2954 & 1.6698 & 1.999 & 2.388 & 2.6575 & 3.227 \\\hline 63 & 0.2544 & 0.5271 & 0.8474 & 1.2951 & 1.6694 & 1.9983 & 2.387 & 2.6562 & 3.2247 \\\hline 64 & 0.2544 & 0.527 & 0.8473 & 1.2949 & 1.669 & 1.9977 & 2.386 & 2.6549 & 3.2225 \\\hline 65 & 0.2544 & 0.527 & 0.8472 & 1.2947 & 1.6686 & 1.9971 & 2.3851 & 2.6536 & 3.2204 \\\hline 66 & 0.2544 & 0.5269 & 0.8471 & 1.2945 & 1.6683 & 1.9966 & 2.3842 & 2.6524 & 3.2184 \\\hline 67 & 0.2544 & 0.5269 & 0.847 & 1.2943 & 1.6679 & 1.996 & 2.3833 & 2.6512 & 3.2164 \\\hline 68 & 0.2544 & 0.5269 & 0.8469 & 1.2941 & 1.6676 & 1.9955 & 2.3824 & 2.6501 & 3.2145 \\\hline 69 & 0.2543 & 0.5268 & 0.8469 & 1.294 & 1.6672 & 1.995 & 2.3816 & 2.649 & 3.2126 \\\hline 70 & 0.2543 & 0.5268 & 0.8468 & 1.2938 & 1.6669 & 1.9944 & 2.3808 & 2.6479 & 3.2108 \\\hline 71 & 0.2543 & 0.5268 & 0.8467 & 1.2936 & 1.6666 & 1.994 & 2.38 & 2.6469 & 3.209 \\\hline 72 & 0.2543 & 0.5267 & 0.8467 & 1.2934 & 1.6663 & 1.9935 & 2.3793 & 2.6459 & 3.2073 \\\hline 73 & 0.2543 & 0.5267 & 0.8466 & 1.2933 & 1.666 & 1.993 & 2.3785 & 2.6449 & 3.2057 \\\hline 74 & 0.2543 & 0.5267 & 0.8465 & 1.2931 & 1.6657 & 1.9925 & 2.3778 & 2.6439 & 3.2041 \\\hline 75 & 0.2543 & 0.5266 & 0.8464 & 1.2929 & 1.6654 & 1.9921 & 2.3771 & 2.643 & 3.2025 \\\hline 76 & 0.2542 & 0.5266 & 0.8464 & 1.2928 & 1.6652 & 1.9917 & 2.3764 & 2.6421 & 3.201 \\\hline 77 & 0.2542 & 0.5266 & 0.8463 & 1.2926 & 1.6649 & 1.9913 & 2.3758 & 2.6412 & 3.1995 \\\hline 78 & 0.2542 & 0.5266 & 0.8463 & 1.2925 & 1.6646 & 1.9909 & 2.3751 & 2.6404 & 3.198 \\\hline 79 & 0.2542 & 0.5265 & 0.8462 & 1.2924 & 1.6644 & 1.9905 & 2.3745 & 2.6395 & 3.1966 \\\hline 80 & 0.2542 & 0.5265 & 0.8461 & 1.2922 & 1.6641 & 1.9901 & 2.3739 & 2.6387 & 3.1953 \\\hline \end{array} \] \[ \begin{array}{|c|*{ 9 }{|c}|} \hline & 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 0.975 & 0.99 & 0.995 & 0.999 \\\hline\hline 81 & 0.2542 & 0.5265 & 0.8461 & 1.2921 & 1.6639 & 1.9897 & 2.3733 & 2.6379 & 3.1939 \\\hline 82 & 0.2542 & 0.5265 & 0.846 & 1.292 & 1.6637 & 1.9893 & 2.3727 & 2.6371 & 3.1926 \\\hline 83 & 0.2542 & 0.5264 & 0.846 & 1.2918 & 1.6634 & 1.989 & 2.3721 & 2.6364 & 3.1914 \\\hline 84 & 0.2542 & 0.5264 & 0.8459 & 1.2917 & 1.6632 & 1.9886 & 2.3716 & 2.6356 & 3.1901 \\\hline 85 & 0.2541 & 0.5264 & 0.8459 & 1.2916 & 1.663 & 1.9883 & 2.371 & 2.6349 & 3.1889 \\\hline 86 & 0.2541 & 0.5264 & 0.8458 & 1.2915 & 1.6628 & 1.988 & 2.3705 & 2.6342 & 3.1877 \\\hline 87 & 0.2541 & 0.5263 & 0.8458 & 1.2914 & 1.6626 & 1.9876 & 2.37 & 2.6335 & 3.1866 \\\hline 88 & 0.2541 & 0.5263 & 0.8457 & 1.2913 & 1.6624 & 1.9873 & 2.3695 & 2.6329 & 3.1854 \\\hline 89 & 0.2541 & 0.5263 & 0.8457 & 1.2911 & 1.6622 & 1.987 & 2.369 & 2.6322 & 3.1844 \\\hline 90 & 0.2541 & 0.5263 & 0.8457 & 1.291 & 1.662 & 1.9867 & 2.3685 & 2.6316 & 3.1833 \\\hline 91 & 0.2541 & 0.5262 & 0.8456 & 1.2909 & 1.6618 & 1.9864 & 2.368 & 2.6309 & 3.1822 \\\hline 92 & 0.2541 & 0.5262 & 0.8456 & 1.2908 & 1.6616 & 1.9861 & 2.3676 & 2.6303 & 3.1812 \\\hline 93 & 0.2541 & 0.5262 & 0.8455 & 1.2907 & 1.6614 & 1.9858 & 2.3671 & 2.6297 & 3.1802 \\\hline 94 & 0.2541 & 0.5262 & 0.8455 & 1.2906 & 1.6612 & 1.9855 & 2.3667 & 2.6292 & 3.1792 \\\hline 95 & 0.2541 & 0.5262 & 0.8454 & 1.2905 & 1.6611 & 1.9853 & 2.3663 & 2.6286 & 3.1783 \\\hline 96 & 0.2541 & 0.5261 & 0.8454 & 1.2904 & 1.6609 & 1.985 & 2.3658 & 2.628 & 3.1773 \\\hline 97 & 0.254 & 0.5261 & 0.8453 & 1.2903 & 1.6607 & 1.9847 & 2.3654 & 2.6275 & 3.1764 \\\hline 98 & 0.254 & 0.5261 & 0.8453 & 1.2903 & 1.6606 & 1.9845 & 2.365 & 2.6269 & 3.1755 \\\hline 99 & 0.254 & 0.5261 & 0.8453 & 1.2902 & 1.6604 & 1.9842 & 2.3646 & 2.6264 & 3.1746 \\\hline 100 & 0.254 & 0.5261 & 0.8452 & 1.2901 & 1.6602 & 1.984 & 2.3642 & 2.6259 & 3.1737 \\\hline 101 & 0.254 & 0.5261 & 0.8452 & 1.29 & 1.6601 & 1.9837 & 2.3638 & 2.6254 & 3.1729 \\\hline 102 & 0.254 & 0.5261 & 0.8452 & 1.2899 & 1.6599 & 1.9835 & 2.3635 & 2.6249 & 3.1721 \\\hline 103 & 0.254 & 0.526 & 0.8451 & 1.2898 & 1.6598 & 1.9833 & 2.3631 & 2.6244 & 3.1713 \\\hline 104 & 0.254 & 0.526 & 0.8451 & 1.2898 & 1.6596 & 1.983 & 2.3627 & 2.6239 & 3.1705 \\\hline 105 & 0.254 & 0.526 & 0.8451 & 1.2897 & 1.6595 & 1.9828 & 2.3624 & 2.6235 & 3.1697 \\\hline 106 & 0.254 & 0.526 & 0.845 & 1.2896 & 1.6594 & 1.9826 & 2.3621 & 2.623 & 3.1689 \\\hline 107 & 0.254 & 0.526 & 0.845 & 1.2895 & 1.6592 & 1.9824 & 2.3617 & 2.6226 & 3.1682 \\\hline 108 & 0.254 & 0.526 & 0.845 & 1.2895 & 1.6591 & 1.9822 & 2.3614 & 2.6221 & 3.1674 \\\hline 109 & 0.254 & 0.5259 & 0.8449 & 1.2894 & 1.659 & 1.982 & 2.3611 & 2.6217 & 3.1667 \\\hline 110 & 0.254 & 0.5259 & 0.8449 & 1.2893 & 1.6588 & 1.9818 & 2.3607 & 2.6213 & 3.166 \\\hline 111 & 0.254 & 0.5259 & 0.8449 & 1.2892 & 1.6587 & 1.9816 & 2.3604 & 2.6209 & 3.1653 \\\hline 112 & 0.254 & 0.5259 & 0.8449 & 1.2892 & 1.6586 & 1.9814 & 2.3601 & 2.6204 & 3.1646 \\\hline 113 & 0.254 & 0.5259 & 0.8448 & 1.2891 & 1.6585 & 1.9812 & 2.3598 & 2.62 & 3.1639 \\\hline 114 & 0.254 & 0.5259 & 0.8448 & 1.289 & 1.6583 & 1.981 & 2.3595 & 2.6197 & 3.1633 \\\hline 115 & 0.2539 & 0.5259 & 0.8448 & 1.289 & 1.6582 & 1.9808 & 2.3592 & 2.6193 & 3.1626 \\\hline 116 & 0.2539 & 0.5259 & 0.8447 & 1.2889 & 1.6581 & 1.9806 & 2.3589 & 2.6189 & 3.162 \\\hline 117 & 0.2539 & 0.5258 & 0.8447 & 1.2888 & 1.658 & 1.9805 & 2.3587 & 2.6185 & 3.1614 \\\hline 118 & 0.2539 & 0.5258 & 0.8447 & 1.2888 & 1.6579 & 1.9803 & 2.3584 & 2.6181 & 3.1607 \\\hline 119 & 0.2539 & 0.5258 & 0.8447 & 1.2887 & 1.6578 & 1.9801 & 2.3581 & 2.6178 & 3.1601 \\\hline 120 & 0.2539 & 0.5258 & 0.8446 & 1.2887 & 1.6577 & 1.9799 & 2.3578 & 2.6174 & 3.1595 \\\hline \end{array} \]