Tables
Principe de l'approximation
Pour déterminer les tables suivantes, on approche l'aire sous les fonctions de répartition par la
méthode des trapèzes ou la
méthode de Simpson (dites des
paraboles).
On découpe l'intervalle d'intégration en \( n\) morceaux et on fait la somme de l'approximation de l'intégrale sur de petits intervalles \( [x_k ; x_{k+1}]\) où \( x_k=a+\dfrac{b-a}{n}k\) .
- Méthode des trapèzes.
-
On approche l'aire sous une courbe par l'aire facile d'un trapèze.
Découpage en \( 1\) trapèze
Découpage en \( 5\) trapèzes
Formule des trapèzes
\( \dpl{\int_{a}^{b}f(x)dx=\lim{n\rightarrow+\infty}\sum_{k=0}^{n-1}
\dfrac{b-a}{2n}\left(f\left(x_k\right)+f\left(x_{k+1}\right)\right)}\)
L'algorithme en \Python d'approximation par un découpage en \( n\) trapèzes est :
\beginlisting1
def ApproxIntTrapeze(f, a, b, n) :
h=(b-a)/n
res=[]
m=a
for i in range(n-1) :
M=m+h
res.append(h*(f(m)+f(M))/2)
m=M
return res
\endlisting
- Méthode de Simpson.
-
On approche l'aire sous la courbe par celle d'une parabole obtenue par les polynômes d'interpolation de Lagrange. Les trois point d'interpolation son les points aux extrémités et le point médian.
Découpage en \( 1\) parabole
Découpage en \( 2\) paraboles
Formule de Simpson
\( \dpl{\int_{a}^{b}f(x)dx=\lim{n\rightarrow+\infty}\sum_{k=0}^{n-1}
\dfrac{b-a}{6n}\left(f(x_k)+4f\left(\dfrac{x_k+x_{k+1}}{2}\right)+f(x_{k+1})\right)}\)
L'algorithme en \Python d'approximation par un découpage en \( n\) paraboles est :
\beginlisting1
def ApproxIntSimpson(f, a, b ) :
h=(b-a)/n
res=[]
m=a
for i in range(n-1) :
M=m+h
res.append((h/6)*(f(m)
+6*f((m+M)/2)+f(M)))
m=M
return res
\endlisting
Les valeurs de retour de ces fonctions sont des listes contenant la valeur approché de l'intégrale sur \( [x_k ; x_{k+1}]\) . En particulier la somme de toutes les valeurs de ces listes approchent \( \dpl{\int_{a}^b f(x)\ dx}\) .
Construction des tables
- Table de la loi normale.
- Si \( X\sim\mathcal{N}(\mu, \sigma)\) alors \( X=\sigma Z+\mu\) où \( Z\sim\mathcal{N}(0, 1)\) est la loi normale centrée réduite.
Il suffit donc de déterminer les valeurs de \( \Proba(Z\leqslant t)\) pour différente valeur de \( t\) . On observe que \( Z\) est symétrique, c'est à dire qu'il ne suffit de déterminer \( \Proba(Z\leqslant t)\) que pour des valeurs positives de \( t\) . En effet, si \( t\) est négatif on a
\begin{eqnarray*}
\Proba(Z\leqslant t)
&=&\Proba(Z\geqslant -t)\\
&=&1-\Proba(Z\leqslant -t)\\
\end{eqnarray*}
On rappel que la densité de \( Z\) est\( p(x)=\dfrac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\) . Le principe de l'algorithme est le suivant : on fixe une borne a représentant l'infini (on prendra \( 4\) car \( \Proba(Z{>}4){<}0.1\%\) il n'y a donc (presque) plus d'aire après \( 4\) ). On approche l'intégrale entre sur \( [0 ; \texttt{a}]\) par la méthode des trapèzes. On ajoute case par case les approximations retournées par la fonction ApproxIntTrapeze jusqu'à ce que l'on atteingne la valeur \( t_1\) en commençant à 0.5 (car \( \Proba(Z\leqslant 0)=0.5\) ). La fonction de répartition étant croissante il suffit d'ajouter les valeurs suivantes de la liste jusqu'à la valeur suivante \( t_2\) . Le paramètre pa, de précision d'approximation, indique le nombre de décimale que l'on souhaite voir apparaitre.
\beginlisting1
def normale(x) : return (1/sqrt(2*pi))*exp(-x**2/2)
def TableNormale(a, n, pa) :
X=ApproxIntTrapeze(normale, 0 , a, n)
case=dict()
pos=0
for i in range(a*10) :
case[i]=dict()
for j in range(10) :
if(i==0 and j==0) : case[i][j]=0.5
else :
if(j==0) : case[i][j] = case[i-1][9]
else : case[i][j] = case[i][j-1]
while(pos/n*a
- Table du \( \chi^2\) .
- Dans les cas pratiques d'utilisation des lois de \( \chi^2_n\) , à \( n\) degrés de liberté, on s'intéresse à trouver \( t\) tel que \( \Proba(X\leqslant t)\simeq 0.9725\) ou \( 0.99\) .
On peut démontrer via le théorème de la limite centrale que pour \( n\) suffisamment grand \( \chi^2_n\) s'approchent bien par \( \mathcal{N}(n,\sqrt{2n})\) de sorte qu'il n'est pas nécessaire d'effectuer le calcul pour de trop grande valeur de \( n\) . On choisi de ne pas aller plus loin que \( 100\) .
La fonction de répartition de la loi du \( \chi^2_n\) est \( \dpl{\gamma_n(x)=c_n\int_{0}^{\frac{x}{2}}t^{\frac{n}{2}-1}e^{-t}\ dt}\) où \( c_n\) est la constante \( \dpl{\dfrac{1}{\int_0^{+\infty}t^{\frac{n}{2}-1}e^{-t}\ dt}}\) .
Le principe de l'algorithme est le suivant : pour chaque de degrés de liberté deg fixés et chaque valeur val, on approche l'intégrale et on cherche la valeur de \( t\) satisfaisant \( \Proba(X\leqslant t)\simeq val\)
\beginlisting1
def gamma(xmax, deg, n=10**(6)) :
def f(t) : return t**(n-1) *exp(-t)
return ApproxIntSimpson(f, 10**(-10), xmax, n)
def TableChi2DEG(deg, VAL, n=10**(6)) :
gam=gamma(150, deg/2, n)
gamTOT=sum(gam)
res=dict()
pos=0
som=0
t=0
for val in VAL :
while(som
- Table de Student.
- C'est le même principe que la loi du \( \chi^2_n\) sachant que la densité est \( p(x)=c_n\left(1+\dfrac{x^2}{n}\right)^{-\frac{n+1}{2}}\) où la constante \( c_n\) fait de \( p\) une fonction de densité. De même, comme pour la loi normale centrée réduite, les lois de Student sont symétriques : \( \Proba(X\leqslant -t)=1-\Proba(X\leqslant t)\) .
Enfin pour \( n\) suffisamment grand la loi de Student à \( n\) degrés de liberté est approché par \( \mathcal{N}\left(n, \sqrt{\dfrac{n}{n-2}}\right)\) .
\beginlisting1
def TableStudentDEG(deg, VAL, n=10**(6)) :
def f(x) : return (1+x**2/deg)**(-(deg+1)/2)
X=ApproxIntSimpson(f, 0 , 100, n)
studentTOT=2*sum(X)
student=[s/studentTOT for s in X]
res=dict()
pos=0
som=0.5
t=0
for val in VAL :
while(som
Loi normale centrée réduite
Dans le tableau, à l'intersection de la ligne \( i\) et de la colonne \( j\) approche (assez bien) \( \Proba(Z\leqslant i+j)\) pour \( Z\sim \mathcal{N}(0, 1)\) .
\[
\begin{array}{|c|*{10}{|c}|}
\hline
& 0.0 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 & 0.06 & 0.07 & 0.08 & 0.09 \\\hline\hline
0.0 & 0.50000 & 0.50399 & 0.50798 & 0.51197 & 0.51595 & 0.51994 & 0.52392 & 0.52790 & 0.53188 & 0.53586 \\\hline
0.1 & 0.53983 & 0.54380 & 0.54776 & 0.55172 & 0.55567 & 0.55962 & 0.56356 & 0.56749 & 0.57142 & 0.57535 \\\hline
0.2 & 0.57926 & 0.58317 & 0.58706 & 0.59095 & 0.59484 & 0.59871 & 0.60257 & 0.60642 & 0.61026 & 0.61409 \\\hline
0.3 & 0.61791 & 0.62172 & 0.62552 & 0.62930 & 0.63307 & 0.63683 & 0.64058 & 0.64431 & 0.64803 & 0.65173 \\\hline
0.4 & 0.65542 & 0.65910 & 0.66276 & 0.66640 & 0.67003 & 0.67364 & 0.67724 & 0.68082 & 0.68439 & 0.68793 \\\hline
0.5 & 0.69146 & 0.69497 & 0.69847 & 0.70194 & 0.70540 & 0.70884 & 0.71226 & 0.71566 & 0.71904 & 0.72240 \\\hline
0.6 & 0.72575 & 0.72907 & 0.73237 & 0.73565 & 0.73891 & 0.74215 & 0.74537 & 0.74857 & 0.75175 & 0.75490 \\\hline
0.7 & 0.75804 & 0.76115 & 0.76424 & 0.76730 & 0.77035 & 0.77337 & 0.77637 & 0.77935 & 0.78230 & 0.78524 \\\hline
0.8 & 0.78814 & 0.79103 & 0.79389 & 0.79673 & 0.79955 & 0.80234 & 0.80511 & 0.80785 & 0.81057 & 0.81327 \\\hline
0.9 & 0.81594 & 0.81859 & 0.82121 & 0.82381 & 0.82639 & 0.82894 & 0.83147 & 0.83398 & 0.83646 & 0.83891 \\\hline
1.0 & 0.84134 & 0.84375 & 0.84614 & 0.84849 & 0.85083 & 0.85314 & 0.85543 & 0.85769 & 0.85993 & 0.86214 \\\hline
1.1 & 0.86433 & 0.86650 & 0.86864 & 0.87076 & 0.87286 & 0.87493 & 0.87698 & 0.87900 & 0.88100 & 0.88298 \\\hline
1.2 & 0.88493 & 0.88686 & 0.88877 & 0.89065 & 0.89251 & 0.89435 & 0.89617 & 0.89796 & 0.89973 & 0.90147 \\\hline
1.3 & 0.90320 & 0.90490 & 0.90658 & 0.90824 & 0.90988 & 0.91149 & 0.91309 & 0.91466 & 0.91621 & 0.91774 \\\hline
1.4 & 0.91924 & 0.92073 & 0.92220 & 0.92364 & 0.92507 & 0.92647 & 0.92785 & 0.92922 & 0.93056 & 0.93189 \\\hline
1.5 & 0.93319 & 0.93448 & 0.93574 & 0.93699 & 0.93822 & 0.93943 & 0.94062 & 0.94179 & 0.94295 & 0.94408 \\\hline
1.6 & 0.94520 & 0.94630 & 0.94738 & 0.94845 & 0.94950 & 0.95053 & 0.95154 & 0.95254 & 0.95352 & 0.95449 \\\hline
1.7 & 0.95543 & 0.95637 & 0.95728 & 0.95818 & 0.95907 & 0.95994 & 0.96080 & 0.96164 & 0.96246 & 0.96327 \\\hline
1.8 & 0.96407 & 0.96485 & 0.96562 & 0.96638 & 0.96712 & 0.96784 & 0.96856 & 0.96926 & 0.96995 & 0.97062 \\\hline
1.9 & 0.97128 & 0.97193 & 0.97257 & 0.97320 & 0.97381 & 0.97441 & 0.97500 & 0.97558 & 0.97615 & 0.97670 \\\hline
2.0 & 0.97725 & 0.97778 & 0.97831 & 0.97882 & 0.97932 & 0.97982 & 0.98030 & 0.98077 & 0.98124 & 0.98169 \\\hline
2.1 & 0.98214 & 0.98257 & 0.98300 & 0.98341 & 0.98382 & 0.98422 & 0.98461 & 0.98500 & 0.98537 & 0.98574 \\\hline
2.2 & 0.98610 & 0.98645 & 0.98679 & 0.98713 & 0.98745 & 0.98778 & 0.98809 & 0.98840 & 0.98870 & 0.98899 \\\hline
2.3 & 0.98928 & 0.98956 & 0.98983 & 0.99010 & 0.99036 & 0.99061 & 0.99086 & 0.99111 & 0.99134 & 0.99158 \\\hline
2.4 & 0.99180 & 0.99202 & 0.99224 & 0.99245 & 0.99266 & 0.99286 & 0.99305 & 0.99324 & 0.99343 & 0.99361 \\\hline
2.5 & 0.99379 & 0.99396 & 0.99413 & 0.99430 & 0.99446 & 0.99461 & 0.99477 & 0.99492 & 0.99506 & 0.99520 \\\hline
2.6 & 0.99534 & 0.99547 & 0.99560 & 0.99573 & 0.99585 & 0.99598 & 0.99609 & 0.99621 & 0.99632 & 0.99643 \\\hline
2.7 & 0.99653 & 0.99664 & 0.99674 & 0.99683 & 0.99693 & 0.99702 & 0.99711 & 0.99720 & 0.99728 & 0.99736 \\\hline
2.8 & 0.99744 & 0.99752 & 0.99760 & 0.99767 & 0.99774 & 0.99781 & 0.99788 & 0.99795 & 0.99801 & 0.99807 \\\hline
2.9 & 0.99813 & 0.99819 & 0.99825 & 0.99831 & 0.99836 & 0.99841 & 0.99846 & 0.99851 & 0.99856 & 0.99861 \\\hline
3.0 & 0.99865 & 0.99869 & 0.99874 & 0.99878 & 0.99882 & 0.99886 & 0.99889 & 0.99893 & 0.99896 & 0.99900 \\\hline
3.1 & 0.99903 & 0.99906 & 0.99910 & 0.99913 & 0.99916 & 0.99918 & 0.99921 & 0.99924 & 0.99926 & 0.99929 \\\hline
3.2 & 0.99931 & 0.99934 & 0.99936 & 0.99938 & 0.99940 & 0.99942 & 0.99944 & 0.99946 & 0.99948 & 0.99950 \\\hline
3.3 & 0.99952 & 0.99953 & 0.99955 & 0.99957 & 0.99958 & 0.99960 & 0.99961 & 0.99962 & 0.99964 & 0.99965 \\\hline
3.4 & 0.99966 & 0.99968 & 0.99969 & 0.99970 & 0.99971 & 0.99972 & 0.99973 & 0.99974 & 0.99975 & 0.99976 \\\hline
3.5 & 0.99977 & 0.99978 & 0.99978 & 0.99979 & 0.99980 & 0.99981 & 0.99981 & 0.99982 & 0.99983 & 0.99983 \\\hline
3.6 & 0.99984 & 0.99985 & 0.99985 & 0.99986 & 0.99986 & 0.99987 & 0.99987 & 0.99988 & 0.99988 & 0.99989 \\\hline
3.7 & 0.99989 & 0.99990 & 0.99990 & 0.99990 & 0.99991 & 0.99991 & 0.99992 & 0.99992 & 0.99992 & 0.99992 \\\hline
3.8 & 0.99993 & 0.99993 & 0.99993 & 0.99994 & 0.99994 & 0.99994 & 0.99994 & 0.99995 & 0.99995 & 0.99995 \\\hline
3.9 & 0.99995 & 0.99995 & 0.99996 & 0.99996 & 0.99996 & 0.99996 & 0.99996 & 0.99996 & 0.99997 & 0.99997 \\\hline
\end{array}
\]
Table des lois du \( \chi^2\)
Si \( X\sim \chi^2_n\) alors dans le tableau, la valeur \( t\) à l'intersection de la ligne \( n\) et de la colonne \( m\) vérifie (assez bien) \( \Proba(X\leqslant t)=m\) .
\[
\begin{array}{|c|*{ 17 }{|c}|}
\hline
& 0.001 & 0.005 & 0.025 & 0.05 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 0.975 & 0.995 & 0.999 \\\hline\hline
1 & 0.0 & 0.0 & 0.001 & 0.003 & 0.015 & 0.062 & 0.145 & 0.271 & 0.45 & 0.703 & 1.069 & 1.636 & 2.699 & 3.834 & 5.017 & 7.872 & 10.819 \\\hline
2 & 0.002 & 0.01 & 0.051 & 0.103 & 0.211 & 0.446 & 0.713 & 1.022 & 1.386 & 1.833 & 2.408 & 3.219 & 4.605 & 5.991 & 7.378 & 10.597 & 13.816 \\\hline
3 & 0.024 & 0.072 & 0.216 & 0.352 & 0.584 & 1.005 & 1.424 & 1.869 & 2.366 & 2.946 & 3.665 & 4.642 & 6.251 & 7.815 & 9.348 & 12.838 & 16.266 \\\hline
4 & 0.091 & 0.207 & 0.484 & 0.711 & 1.064 & 1.649 & 2.195 & 2.753 & 3.357 & 4.045 & 4.878 & 5.989 & 7.779 & 9.488 & 11.143 & 14.86 & 18.467 \\\hline
5 & 0.21 & 0.412 & 0.831 & 1.145 & 1.61 & 2.343 & 3.0 & 3.656 & 4.351 & 5.132 & 6.064 & 7.289 & 9.236 & 11.07 & 12.833 & 16.75 & 20.515 \\\hline
6 & 0.381 & 0.676 & 1.237 & 1.635 & 2.204 & 3.07 & 3.828 & 4.57 & 5.348 & 6.211 & 7.231 & 8.558 & 10.645 & 12.592 & 14.449 & 18.548 & 22.458 \\\hline
7 & 0.598 & 0.989 & 1.69 & 2.167 & 2.833 & 3.822 & 4.671 & 5.493 & 6.346 & 7.283 & 8.383 & 9.803 & 12.017 & 14.067 & 16.013 & 20.278 & 24.322 \\\hline
8 & 0.857 & 1.344 & 2.18 & 2.733 & 3.49 & 4.594 & 5.527 & 6.423 & 7.344 & 8.351 & 9.524 & 11.03 & 13.362 & 15.507 & 17.535 & 21.955 & 26.124 \\\hline
9 & 1.152 & 1.735 & 2.7 & 3.325 & 4.168 & 5.38 & 6.393 & 7.357 & 8.343 & 9.414 & 10.656 & 12.242 & 14.684 & 16.919 & 19.023 & 23.589 & 27.877 \\\hline
10 & 1.479 & 2.156 & 3.247 & 3.94 & 4.865 & 6.179 & 7.267 & 8.295 & 9.342 & 10.473 & 11.781 & 13.442 & 15.987 & 18.307 & 20.483 & 25.188 & 29.588 \\\hline
11 & 1.834 & 2.603 & 3.816 & 4.575 & 5.578 & 6.989 & 8.148 & 9.237 & 10.341 & 11.53 & 12.899 & 14.631 & 17.275 & 19.675 & 21.92 & 26.757 & 31.264 \\\hline
12 & 2.214 & 3.074 & 4.404 & 5.226 & 6.304 & 7.807 & 9.034 & 10.182 & 11.34 & 12.584 & 14.011 & 15.812 & 18.549 & 21.026 & 23.337 & 28.3 & 32.909 \\\hline
13 & 2.617 & 3.565 & 5.009 & 5.892 & 7.042 & 8.634 & 9.926 & 11.129 & 12.34 & 13.636 & 15.119 & 16.985 & 19.812 & 22.362 & 24.736 & 29.819 & 34.528 \\\hline
14 & 3.041 & 4.075 & 5.629 & 6.571 & 7.79 & 9.467 & 10.821 & 12.078 & 13.339 & 14.685 & 16.222 & 18.151 & 21.064 & 23.685 & 26.119 & 31.319 & 36.123 \\\hline
15 & 3.483 & 4.601 & 6.262 & 7.261 & 8.547 & 10.307 & 11.721 & 13.03 & 14.339 & 15.733 & 17.322 & 19.311 & 22.307 & 24.996 & 27.488 & 32.801 & 37.697 \\\hline
16 & 3.942 & 5.142 & 6.908 & 7.962 & 9.312 & 11.152 & 12.624 & 13.983 & 15.339 & 16.78 & 18.418 & 20.465 & 23.542 & 26.296 & 28.845 & 34.267 & 39.252 \\\hline
17 & 4.416 & 5.697 & 7.564 & 8.672 & 10.085 & 12.002 & 13.531 & 14.937 & 16.338 & 17.824 & 19.511 & 21.615 & 24.769 & 27.587 & 30.191 & 35.718 & 40.79 \\\hline
18 & 4.905 & 6.265 & 8.231 & 9.39 & 10.865 & 12.857 & 14.44 & 15.893 & 17.338 & 18.868 & 20.601 & 22.76 & 25.989 & 28.869 & 31.526 & 37.156 & 42.312 \\\hline
19 & 5.407 & 6.844 & 8.907 & 10.117 & 11.651 & 13.716 & 15.352 & 16.85 & 18.338 & 19.91 & 21.689 & 23.9 & 27.204 & 30.144 & 32.852 & 38.582 & 43.82 \\\hline
20 & 5.921 & 7.434 & 9.591 & 10.851 & 12.443 & 14.578 & 16.266 & 17.809 & 19.337 & 20.951 & 22.775 & 25.038 & 28.412 & 31.41 & 34.17 & 39.997 & 45.315 \\\hline
21 & 6.447 & 8.034 & 10.283 & 11.591 & 13.24 & 15.445 & 17.182 & 18.768 & 20.337 & 21.992 & 23.858 & 26.171 & 29.615 & 32.671 & 35.479 & 41.401 & 46.797 \\\hline
22 & 6.983 & 8.643 & 10.982 & 12.338 & 14.042 & 16.314 & 18.101 & 19.729 & 21.337 & 23.031 & 24.939 & 27.301 & 30.813 & 33.924 & 36.781 & 42.796 & 48.268 \\\hline
23 & 7.529 & 9.26 & 11.689 & 13.091 & 14.848 & 17.187 & 19.021 & 20.69 & 22.337 & 24.069 & 26.018 & 28.429 & 32.007 & 35.172 & 38.076 & 44.181 & 49.728 \\\hline
24 & 8.085 & 9.886 & 12.401 & 13.848 & 15.659 & 18.062 & 19.943 & 21.652 & 23.337 & 25.106 & 27.096 & 29.553 & 33.196 & 36.415 & 39.364 & 45.559 & 51.179 \\\hline
25 & 8.649 & 10.52 & 13.12 & 14.611 & 16.473 & 18.94 & 20.867 & 22.616 & 24.337 & 26.143 & 28.172 & 30.675 & 34.382 & 37.652 & 40.646 & 46.928 & 52.62 \\\hline
\end{array}
\]
\[
\begin{array}{|c|*{ 17 }{|c}|}
\hline
& 0.001 & 0.005 & 0.025 & 0.05 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 0.975 & 0.995 & 0.999 \\\hline\hline
26 & 9.222 & 11.16 & 13.844 & 15.379 & 17.292 & 19.82 & 21.792 & 23.579 & 25.336 & 27.179 & 29.246 & 31.795 & 35.563 & 38.885 & 41.923 & 48.29 & 54.052 \\\hline
27 & 9.803 & 11.808 & 14.573 & 16.151 & 18.114 & 20.703 & 22.719 & 24.544 & 26.336 & 28.214 & 30.319 & 32.912 & 36.741 & 40.113 & 43.195 & 49.645 & 55.476 \\\hline
28 & 10.391 & 12.461 & 15.308 & 16.928 & 18.939 & 21.588 & 23.647 & 25.509 & 27.336 & 29.249 & 31.391 & 34.027 & 37.916 & 41.337 & 44.461 & 50.993 & 56.892 \\\hline
29 & 10.986 & 13.121 & 16.047 & 17.708 & 19.768 & 22.475 & 24.577 & 26.475 & 28.336 & 30.283 & 32.461 & 35.139 & 39.087 & 42.557 & 45.722 & 52.336 & 58.301 \\\hline
30 & 11.588 & 13.787 & 16.791 & 18.493 & 20.599 & 23.364 & 25.508 & 27.442 & 29.336 & 31.316 & 33.53 & 36.25 & 40.256 & 43.773 & 46.979 & 53.672 & 59.703 \\\hline
31 & 12.196 & 14.458 & 17.539 & 19.281 & 21.434 & 24.255 & 26.44 & 28.409 & 30.336 & 32.349 & 34.598 & 37.359 & 41.422 & 44.985 & 48.232 & 55.003 & 61.098 \\\hline
32 & 12.811 & 15.134 & 18.291 & 20.072 & 22.271 & 25.148 & 27.373 & 29.376 & 31.336 & 33.381 & 35.665 & 38.466 & 42.585 & 46.194 & 49.48 & 56.328 & 62.487 \\\hline
33 & 13.431 & 15.815 & 19.047 & 20.867 & 23.11 & 26.042 & 28.307 & 30.344 & 32.336 & 34.413 & 36.731 & 39.572 & 43.745 & 47.4 & 50.725 & 57.648 & 63.87 \\\hline
34 & 14.057 & 16.501 & 19.806 & 21.664 & 23.952 & 26.938 & 29.242 & 31.313 & 33.336 & 35.444 & 37.795 & 40.676 & 44.903 & 48.602 & 51.966 & 58.964 & 65.247 \\\hline
35 & 14.688 & 17.192 & 20.569 & 22.465 & 24.797 & 27.836 & 30.178 & 32.282 & 34.336 & 36.475 & 38.859 & 41.778 & 46.059 & 49.802 & 53.203 & 60.275 & 66.619 \\\hline
36 & 15.324 & 17.887 & 21.336 & 23.269 & 25.643 & 28.735 & 31.115 & 33.252 & 35.336 & 37.505 & 39.922 & 42.879 & 47.212 & 50.998 & 54.437 & 61.581 & 67.985 \\\hline
37 & 15.965 & 18.586 & 22.106 & 24.075 & 26.492 & 29.635 & 32.053 & 34.222 & 36.336 & 38.535 & 40.984 & 43.978 & 48.363 & 52.192 & 55.668 & 62.883 & 69.346 \\\hline
38 & 16.611 & 19.289 & 22.878 & 24.884 & 27.343 & 30.537 & 32.992 & 35.192 & 37.335 & 39.564 & 42.045 & 45.076 & 49.513 & 53.384 & 56.896 & 64.181 & 70.703 \\\hline
39 & 17.262 & 19.996 & 23.654 & 25.695 & 28.196 & 31.441 & 33.932 & 36.163 & 38.335 & 40.593 & 43.105 & 46.173 & 50.66 & 54.572 & 58.12 & 65.476 & 72.055 \\\hline
40 & 17.916 & 20.707 & 24.433 & 26.509 & 29.051 & 32.345 & 34.872 & 37.134 & 39.335 & 41.622 & 44.165 & 47.269 & 51.805 & 55.758 & 59.342 & 66.766 & 73.402 \\\hline
41 & 18.575 & 21.421 & 25.215 & 27.326 & 29.907 & 33.251 & 35.813 & 38.106 & 40.335 & 42.651 & 45.224 & 48.363 & 52.949 & 56.942 & 60.561 & 68.053 & 74.745 \\\hline
42 & 19.239 & 22.138 & 25.999 & 28.144 & 30.765 & 34.157 & 36.755 & 39.077 & 41.335 & 43.679 & 46.282 & 49.456 & 54.09 & 58.124 & 61.777 & 69.336 & 76.084 \\\hline
43 & 19.906 & 22.859 & 26.785 & 28.965 & 31.625 & 35.065 & 37.698 & 40.05 & 42.335 & 44.706 & 47.339 & 50.548 & 55.23 & 59.304 & 62.99 & 70.616 & 77.419 \\\hline
44 & 20.576 & 23.584 & 27.575 & 29.787 & 32.487 & 35.974 & 38.641 & 41.022 & 43.335 & 45.734 & 48.396 & 51.639 & 56.369 & 60.481 & 64.201 & 71.893 & 78.75 \\\hline
45 & 21.251 & 24.311 & 28.366 & 30.612 & 33.35 & 36.884 & 39.585 & 41.995 & 44.335 & 46.761 & 49.452 & 52.729 & 57.505 & 61.656 & 65.41 & 73.166 & 80.077 \\\hline
46 & 21.929 & 25.041 & 29.16 & 31.439 & 34.215 & 37.795 & 40.529 & 42.968 & 45.335 & 47.787 & 50.507 & 53.818 & 58.641 & 62.83 & 66.617 & 74.437 & 81.4 \\\hline
47 & 22.61 & 25.775 & 29.956 & 32.268 & 35.081 & 38.708 & 41.474 & 43.942 & 46.335 & 48.814 & 51.562 & 54.906 & 59.774 & 64.001 & 67.821 & 75.704 & 82.72 \\\hline
48 & 23.295 & 26.511 & 30.755 & 33.098 & 35.949 & 39.621 & 42.42 & 44.915 & 47.335 & 49.84 & 52.616 & 55.993 & 60.907 & 65.171 & 69.023 & 76.969 & 84.037 \\\hline
49 & 23.983 & 27.249 & 31.555 & 33.93 & 36.818 & 40.534 & 43.366 & 45.889 & 48.335 & 50.866 & 53.67 & 57.079 & 62.038 & 66.339 & 70.222 & 78.231 & 85.351 \\\hline
50 & 24.674 & 27.991 & 32.357 & 34.764 & 37.689 & 41.449 & 44.313 & 46.864 & 49.335 & 51.892 & 54.723 & 58.164 & 63.167 & 67.505 & 71.42 & 79.49 & 86.661 \\\hline
\end{array}
\]
\[
\begin{array}{|c|*{ 17 }{|c}|}
\hline
& 0.001 & 0.005 & 0.025 & 0.05 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 0.975 & 0.995 & 0.999 \\\hline\hline
51 & 25.368 & 28.735 & 33.162 & 35.6 & 38.56 & 42.365 & 45.261 & 47.838 & 50.335 & 52.917 & 55.775 & 59.248 & 64.295 & 68.669 & 72.616 & 80.747 & 87.968 \\\hline
52 & 26.065 & 29.481 & 33.968 & 36.437 & 39.433 & 43.281 & 46.209 & 48.813 & 51.335 & 53.942 & 56.827 & 60.332 & 65.422 & 69.832 & 73.81 & 82.001 & 89.272 \\\hline
53 & 26.765 & 30.23 & 34.776 & 37.276 & 40.308 & 44.199 & 47.157 & 49.788 & 52.335 & 54.967 & 57.879 & 61.414 & 66.548 & 70.993 & 75.002 & 83.253 & 90.573 \\\hline
54 & 27.468 & 30.981 & 35.586 & 38.116 & 41.183 & 45.117 & 48.106 & 50.764 & 53.335 & 55.992 & 58.93 & 62.496 & 67.673 & 72.153 & 76.192 & 84.502 & 91.872 \\\hline
55 & 28.173 & 31.735 & 36.398 & 38.958 & 42.06 & 46.036 & 49.055 & 51.739 & 54.335 & 57.016 & 59.98 & 63.577 & 68.796 & 73.311 & 77.38 & 85.749 & 93.168 \\\hline
56 & 28.881 & 32.49 & 37.212 & 39.801 & 42.937 & 46.955 & 50.005 & 52.715 & 55.335 & 58.04 & 61.031 & 64.658 & 69.919 & 74.468 & 78.567 & 86.994 & 94.461 \\\hline
57 & 29.592 & 33.248 & 38.027 & 40.646 & 43.816 & 47.876 & 50.956 & 53.691 & 56.335 & 59.064 & 62.08 & 65.737 & 71.04 & 75.624 & 79.752 & 88.236 & 95.751 \\\hline
58 & 30.305 & 34.008 & 38.844 & 41.492 & 44.696 & 48.797 & 51.906 & 54.667 & 57.335 & 60.088 & 63.129 & 66.816 & 72.16 & 76.778 & 80.936 & 89.477 & 97.039 \\\hline
59 & 31.02 & 34.77 & 39.662 & 42.339 & 45.577 & 49.718 & 52.858 & 55.643 & 58.335 & 61.112 & 64.178 & 67.894 & 73.279 & 77.931 & 82.117 & 90.715 & 98.324 \\\hline
60 & 31.738 & 35.535 & 40.482 & 43.188 & 46.459 & 50.641 & 53.809 & 56.62 & 59.335 & 62.135 & 65.227 & 68.972 & 74.397 & 79.082 & 83.298 & 91.952 & 99.607 \\\hline
61 & 32.459 & 36.301 & 41.303 & 44.038 & 47.342 & 51.564 & 54.761 & 57.597 & 60.335 & 63.158 & 66.274 & 70.049 & 75.514 & 80.232 & 84.476 & 93.186 & 100.888 \\\hline
62 & 33.181 & 37.068 & 42.126 & 44.889 & 48.226 & 52.487 & 55.714 & 58.574 & 61.335 & 64.181 & 67.322 & 71.125 & 76.63 & 81.381 & 85.654 & 94.419 & 102.166 \\\hline
63 & 33.906 & 37.838 & 42.95 & 45.741 & 49.111 & 53.412 & 56.666 & 59.551 & 62.335 & 65.204 & 68.369 & 72.201 & 77.745 & 82.529 & 86.83 & 95.649 & 103.442 \\\hline
64 & 34.633 & 38.61 & 43.776 & 46.595 & 49.996 & 54.337 & 57.62 & 60.528 & 63.335 & 66.226 & 69.416 & 73.276 & 78.86 & 83.675 & 88.004 & 96.878 & 104.716 \\\hline
65 & 35.362 & 39.383 & 44.603 & 47.45 & 50.883 & 55.262 & 58.573 & 61.506 & 64.335 & 67.249 & 70.462 & 74.351 & 79.973 & 84.821 & 89.177 & 98.105 & 105.988 \\\hline
66 & 36.093 & 40.158 & 45.431 & 48.305 & 51.77 & 56.188 & 59.527 & 62.484 & 65.335 & 68.271 & 71.508 & 75.424 & 81.085 & 85.965 & 90.349 & 99.33 & 107.258 \\\hline
67 & 36.826 & 40.935 & 46.261 & 49.162 & 52.659 & 57.115 & 60.481 & 63.461 & 66.335 & 69.293 & 72.554 & 76.498 & 82.197 & 87.108 & 91.519 & 100.554 & 108.526 \\\hline
68 & 37.561 & 41.713 & 47.092 & 50.02 & 53.548 & 58.042 & 61.436 & 64.44 & 67.335 & 70.315 & 73.6 & 77.571 & 83.308 & 88.25 & 92.689 & 101.776 & 109.791 \\\hline
69 & 38.298 & 42.494 & 47.924 & 50.879 & 54.438 & 58.97 & 62.391 & 65.418 & 68.335 & 71.337 & 74.645 & 78.643 & 84.418 & 89.391 & 93.856 & 102.996 & 111.055 \\\hline
70 & 39.036 & 43.275 & 48.758 & 51.739 & 55.329 & 59.898 & 63.346 & 66.396 & 69.334 & 72.358 & 75.689 & 79.715 & 85.527 & 90.531 & 95.023 & 104.215 & 112.317 \\\hline
71 & 39.777 & 44.058 & 49.592 & 52.6 & 56.221 & 60.827 & 64.302 & 67.375 & 70.334 & 73.38 & 76.734 & 80.786 & 86.635 & 91.67 & 96.189 & 105.432 & 113.577 \\\hline
72 & 40.519 & 44.843 & 50.428 & 53.462 & 57.113 & 61.756 & 65.258 & 68.353 & 71.334 & 74.401 & 77.778 & 81.857 & 87.743 & 92.808 & 97.353 & 106.648 & 114.835 \\\hline
73 & 41.264 & 45.629 & 51.265 & 54.325 & 58.006 & 62.686 & 66.214 & 69.332 & 72.334 & 75.422 & 78.822 & 82.927 & 88.85 & 93.945 & 98.516 & 107.862 & 116.092 \\\hline
74 & 42.01 & 46.417 & 52.103 & 55.189 & 58.9 & 63.616 & 67.17 & 70.311 & 73.334 & 76.443 & 79.865 & 83.997 & 89.956 & 95.081 & 99.678 & 109.074 & 117.346 \\\hline
75 & 42.757 & 47.206 & 52.942 & 56.054 & 59.795 & 64.547 & 68.127 & 71.29 & 74.334 & 77.464 & 80.908 & 85.066 & 91.061 & 96.217 & 100.839 & 110.286 & 118.599 \\\hline
\end{array}
\]
\[
\begin{array}{|c|*{ 17 }{|c}|}
\hline
& 0.001 & 0.005 & 0.025 & 0.05 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 0.975 & 0.995 & 0.999 \\\hline\hline
76 & 43.507 & 47.997 & 53.782 & 56.92 & 60.69 & 65.478 & 69.084 & 72.27 & 75.334 & 78.485 & 81.951 & 86.135 & 92.166 & 97.351 & 101.999 & 111.495 & 119.85 \\\hline
77 & 44.258 & 48.788 & 54.623 & 57.786 & 61.586 & 66.409 & 70.042 & 73.249 & 76.334 & 79.505 & 82.994 & 87.203 & 93.27 & 98.484 & 103.158 & 112.704 & 121.1 \\\hline
78 & 45.01 & 49.582 & 55.466 & 58.654 & 62.483 & 67.341 & 70.999 & 74.228 & 77.334 & 80.526 & 84.036 & 88.271 & 94.374 & 99.617 & 104.316 & 113.911 & 122.348 \\\hline
79 & 45.764 & 50.376 & 56.309 & 59.522 & 63.38 & 68.274 & 71.957 & 75.208 & 78.334 & 81.546 & 85.078 & 89.338 & 95.476 & 100.749 & 105.473 & 115.117 & 123.594 \\\hline
80 & 46.52 & 51.172 & 57.153 & 60.391 & 64.278 & 69.207 & 72.915 & 76.188 & 79.334 & 82.566 & 86.12 & 90.405 & 96.578 & 101.879 & 106.629 & 116.321 & 124.839 \\\hline
81 & 47.277 & 51.969 & 57.998 & 61.261 & 65.176 & 70.14 & 73.874 & 77.168 & 80.334 & 83.586 & 87.161 & 91.472 & 97.68 & 103.01 & 107.783 & 117.524 & 126.083 \\\hline
82 & 48.036 & 52.767 & 58.845 & 62.132 & 66.076 & 71.074 & 74.833 & 78.148 & 81.334 & 84.606 & 88.202 & 92.538 & 98.78 & 104.139 & 108.937 & 118.726 & 127.324 \\\hline
83 & 48.796 & 53.567 & 59.692 & 63.004 & 66.976 & 72.008 & 75.792 & 79.128 & 82.334 & 85.626 & 89.243 & 93.604 & 99.88 & 105.267 & 110.09 & 119.927 & 128.565 \\\hline
84 & 49.557 & 54.368 & 60.54 & 63.876 & 67.876 & 72.943 & 76.751 & 80.108 & 83.334 & 86.646 & 90.284 & 94.669 & 100.98 & 106.395 & 111.242 & 121.126 & 129.804 \\\hline
85 & 50.32 & 55.17 & 61.389 & 64.749 & 68.777 & 73.878 & 77.71 & 81.089 & 84.334 & 87.665 & 91.325 & 95.734 & 102.079 & 107.522 & 112.393 & 122.325 & 131.041 \\\hline
86 & 51.085 & 55.973 & 62.239 & 65.623 & 69.679 & 74.813 & 78.67 & 82.069 & 85.334 & 88.685 & 92.365 & 96.799 & 103.177 & 108.648 & 113.544 & 123.522 & 132.277 \\\hline
87 & 51.85 & 56.777 & 63.089 & 66.498 & 70.581 & 75.749 & 79.63 & 83.05 & 86.334 & 89.704 & 93.405 & 97.863 & 104.275 & 109.773 & 114.693 & 124.718 & 133.512 \\\hline
88 & 52.617 & 57.582 & 63.941 & 67.373 & 71.484 & 76.685 & 80.59 & 84.031 & 87.334 & 90.723 & 94.445 & 98.927 & 105.372 & 110.898 & 115.841 & 125.913 & 134.745 \\\hline
89 & 53.386 & 58.389 & 64.793 & 68.249 & 72.387 & 77.622 & 81.55 & 85.012 & 88.334 & 91.742 & 95.484 & 99.991 & 106.469 & 112.022 & 116.989 & 127.106 & 135.978 \\\hline
90 & 54.155 & 59.196 & 65.647 & 69.126 & 73.291 & 78.558 & 82.511 & 85.993 & 89.334 & 92.761 & 96.524 & 101.054 & 107.565 & 113.145 & 118.136 & 128.299 & 137.208 \\\hline
91 & 54.926 & 60.005 & 66.501 & 70.003 & 74.196 & 79.496 & 83.472 & 86.974 & 90.334 & 93.78 & 97.563 & 102.117 & 108.661 & 114.268 & 119.282 & 129.491 & 138.438 \\\hline
92 & 55.698 & 60.815 & 67.356 & 70.882 & 75.1 & 80.433 & 84.433 & 87.955 & 91.334 & 94.799 & 98.602 & 103.179 & 109.756 & 115.39 & 120.427 & 130.681 & 139.666 \\\hline
93 & 56.472 & 61.625 & 68.211 & 71.76 & 76.006 & 81.371 & 85.394 & 88.936 & 92.334 & 95.818 & 99.641 & 104.241 & 110.85 & 116.511 & 121.571 & 131.871 & 140.893 \\\hline
94 & 57.246 & 62.437 & 69.068 & 72.64 & 76.912 & 82.309 & 86.356 & 89.918 & 93.334 & 96.836 & 100.679 & 105.303 & 111.944 & 117.632 & 122.715 & 133.059 & 142.119 \\\hline
95 & 58.022 & 63.25 & 69.925 & 73.52 & 77.818 & 83.248 & 87.318 & 90.899 & 94.334 & 97.855 & 101.717 & 106.364 & 113.038 & 118.752 & 123.858 & 134.247 & 143.344 \\\hline
96 & 58.799 & 64.063 & 70.783 & 74.401 & 78.725 & 84.187 & 88.279 & 91.881 & 95.334 & 98.873 & 102.755 & 107.425 & 114.131 & 119.871 & 125.0 & 135.433 & 144.567 \\\hline
97 & 59.577 & 64.878 & 71.642 & 75.282 & 79.633 & 85.126 & 89.241 & 92.862 & 96.334 & 99.892 & 103.793 & 108.486 & 115.223 & 120.99 & 126.141 & 136.619 & 145.789 \\\hline
98 & 60.356 & 65.694 & 72.501 & 76.164 & 80.541 & 86.065 & 90.204 & 93.844 & 97.334 & 100.91 & 104.831 & 109.547 & 116.315 & 122.108 & 127.282 & 137.803 & 147.01 \\\hline
99 & 61.137 & 66.51 & 73.361 & 77.046 & 81.449 & 87.005 & 91.166 & 94.826 & 98.334 & 101.928 & 105.868 & 110.607 & 117.407 & 123.225 & 128.422 & 138.987 & 148.23 \\\hline
100 & 61.918 & 67.328 & 74.222 & 77.929 & 82.358 & 87.945 & 92.129 & 95.808 & 99.334 & 102.946 & 106.906 & 111.667 & 118.498 & 124.342 & 129.561 & 140.169 & 149.449 \\\hline
\end{array}
\]
Table des lois de Student
Si \( X\sim \mathcal{T}_n\) alors dans le tableau, la valeur \( t\) à l'intersection de la ligne \( n\) et de la colonne \( m\) vérifie (assez bien) \( \Proba(X\leqslant t)=m\) .
\[
\begin{array}{|c|*{ 9 }{|c}|}
\hline
& 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 0.975 & 0.99 & 0.995 & 0.999 \\\hline\hline
1 & 0.3227 & 0.7205 & 1.3593 & 2.9967 & 5.969 & 11.3414 & 24.3062 & 39.1924 & 76.7861 \\\hline
2 & 0.2878 & 0.6152 & 1.0561 & 1.8713 & 2.8783 & 4.1854 & 6.5232 & 8.7779 & 14.453 \\\hline
3 & 0.2766 & 0.5842 & 0.978 & 1.6365 & 2.3502 & 3.1746 & 4.5147 & 5.7766 & 9.7132 \\\hline
4 & 0.2707 & 0.5686 & 0.9409 & 1.5331 & 2.1315 & 2.7756 & 3.7444 & 4.5982 & 7.1307 \\\hline
5 & 0.2672 & 0.5594 & 0.9195 & 1.4759 & 2.015 & 2.5705 & 3.3646 & 4.0314 & 5.8885 \\\hline
6 & 0.2648 & 0.5534 & 0.9057 & 1.4398 & 1.9432 & 2.4469 & 3.1426 & 3.7073 & 5.2069 \\\hline
7 & 0.2632 & 0.5491 & 0.896 & 1.4149 & 1.8946 & 2.3646 & 2.998 & 3.4995 & 4.7852 \\\hline
8 & 0.2619 & 0.5459 & 0.8889 & 1.3968 & 1.8595 & 2.306 & 2.8965 & 3.3554 & 4.5008 \\\hline
9 & 0.261 & 0.5435 & 0.8834 & 1.383 & 1.8331 & 2.2622 & 2.8214 & 3.2498 & 4.2968 \\\hline
10 & 0.2602 & 0.5415 & 0.8791 & 1.3722 & 1.8125 & 2.2281 & 2.7638 & 3.1693 & 4.1437 \\\hline
11 & 0.2596 & 0.5399 & 0.8755 & 1.3634 & 1.7959 & 2.201 & 2.7181 & 3.1058 & 4.0247 \\\hline
12 & 0.259 & 0.5386 & 0.8726 & 1.3562 & 1.7823 & 2.1788 & 2.681 & 3.0546 & 3.9296 \\\hline
13 & 0.2586 & 0.5375 & 0.8702 & 1.3502 & 1.771 & 2.1604 & 2.6503 & 3.0123 & 3.852 \\\hline
14 & 0.2582 & 0.5366 & 0.8681 & 1.345 & 1.7613 & 2.1448 & 2.6245 & 2.9768 & 3.7874 \\\hline
15 & 0.2579 & 0.5357 & 0.8662 & 1.3406 & 1.7531 & 2.1315 & 2.6025 & 2.9467 & 3.7328 \\\hline
16 & 0.2576 & 0.535 & 0.8647 & 1.3368 & 1.7459 & 2.1199 & 2.5835 & 2.9208 & 3.6862 \\\hline
17 & 0.2574 & 0.5344 & 0.8633 & 1.3334 & 1.7396 & 2.1098 & 2.5669 & 2.8982 & 3.6458 \\\hline
18 & 0.2571 & 0.5338 & 0.862 & 1.3304 & 1.7341 & 2.1009 & 2.5524 & 2.8784 & 3.6105 \\\hline
19 & 0.2569 & 0.5333 & 0.861 & 1.3277 & 1.7291 & 2.093 & 2.5395 & 2.8609 & 3.5794 \\\hline
20 & 0.2567 & 0.5329 & 0.86 & 1.3253 & 1.7247 & 2.086 & 2.528 & 2.8453 & 3.5518 \\\hline
21 & 0.2566 & 0.5325 & 0.8591 & 1.3232 & 1.7208 & 2.0796 & 2.5177 & 2.8314 & 3.5272 \\\hline
22 & 0.2564 & 0.5321 & 0.8583 & 1.3212 & 1.7172 & 2.0739 & 2.5083 & 2.8188 & 3.505 \\\hline
23 & 0.2563 & 0.5318 & 0.8575 & 1.3195 & 1.7139 & 2.0687 & 2.4999 & 2.8073 & 3.485 \\\hline
24 & 0.2562 & 0.5314 & 0.8569 & 1.3178 & 1.7109 & 2.0639 & 2.4922 & 2.797 & 3.4668 \\\hline
25 & 0.2561 & 0.5312 & 0.8563 & 1.3164 & 1.7082 & 2.0595 & 2.4851 & 2.7875 & 3.4502 \\\hline
26 & 0.256 & 0.5309 & 0.8557 & 1.315 & 1.7056 & 2.0555 & 2.4786 & 2.7787 & 3.435 \\\hline
27 & 0.2559 & 0.5307 & 0.8552 & 1.3137 & 1.7033 & 2.0518 & 2.4727 & 2.7707 & 3.421 \\\hline
28 & 0.2558 & 0.5304 & 0.8547 & 1.3125 & 1.7011 & 2.0484 & 2.4671 & 2.7633 & 3.4082 \\\hline
29 & 0.2557 & 0.5302 & 0.8542 & 1.3114 & 1.6991 & 2.0452 & 2.462 & 2.7564 & 3.3962 \\\hline
30 & 0.2556 & 0.53 & 0.8538 & 1.3104 & 1.6973 & 2.0423 & 2.4573 & 2.75 & 3.3852 \\\hline
31 & 0.2555 & 0.5299 & 0.8534 & 1.3095 & 1.6955 & 2.0395 & 2.4528 & 2.7441 & 3.3749 \\\hline
32 & 0.2555 & 0.5297 & 0.853 & 1.3086 & 1.6939 & 2.037 & 2.4487 & 2.7385 & 3.3653 \\\hline
33 & 0.2554 & 0.5295 & 0.8527 & 1.3078 & 1.6924 & 2.0345 & 2.4448 & 2.7333 & 3.3563 \\\hline
34 & 0.2553 & 0.5294 & 0.8523 & 1.307 & 1.6909 & 2.0323 & 2.4412 & 2.7284 & 3.348 \\\hline
35 & 0.2553 & 0.5292 & 0.852 & 1.3062 & 1.6896 & 2.0301 & 2.4377 & 2.7238 & 3.34 \\\hline
36 & 0.2552 & 0.5291 & 0.8517 & 1.3055 & 1.6883 & 2.0281 & 2.4345 & 2.7195 & 3.3326 \\\hline
37 & 0.2552 & 0.529 & 0.8514 & 1.3049 & 1.6871 & 2.0262 & 2.4314 & 2.7154 & 3.3256 \\\hline
38 & 0.2551 & 0.5288 & 0.8512 & 1.3042 & 1.686 & 2.0244 & 2.4286 & 2.7116 & 3.319 \\\hline
39 & 0.2551 & 0.5287 & 0.851 & 1.3036 & 1.6849 & 2.0227 & 2.4258 & 2.7079 & 3.3128 \\\hline
40 & 0.2551 & 0.5286 & 0.8507 & 1.3031 & 1.6839 & 2.0211 & 2.4233 & 2.7045 & 3.3069 \\\hline
\end{array}
\]
\[
\begin{array}{|c|*{ 9 }{|c}|}
\hline
& 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 0.975 & 0.99 & 0.995 & 0.999 \\\hline\hline
41 & 0.255 & 0.5285 & 0.8505 & 1.3025 & 1.6829 & 2.0195 & 2.4208 & 2.7012 & 3.3013 \\\hline
42 & 0.255 & 0.5284 & 0.8503 & 1.3021 & 1.682 & 2.0181 & 2.4185 & 2.6981 & 3.296 \\\hline
43 & 0.2549 & 0.5283 & 0.8501 & 1.3016 & 1.6811 & 2.0167 & 2.4163 & 2.6951 & 3.2909 \\\hline
44 & 0.2549 & 0.5282 & 0.8499 & 1.3011 & 1.6802 & 2.0154 & 2.4141 & 2.6923 & 3.2861 \\\hline
45 & 0.2549 & 0.5281 & 0.8497 & 1.3007 & 1.6794 & 2.0141 & 2.4121 & 2.6896 & 3.2815 \\\hline
46 & 0.2548 & 0.5281 & 0.8495 & 1.3002 & 1.6787 & 2.0129 & 2.4102 & 2.687 & 3.2771 \\\hline
47 & 0.2548 & 0.528 & 0.8493 & 1.2998 & 1.6779 & 2.0118 & 2.4084 & 2.6846 & 3.2729 \\\hline
48 & 0.2548 & 0.5279 & 0.8492 & 1.2994 & 1.6772 & 2.0106 & 2.4066 & 2.6822 & 3.2689 \\\hline
49 & 0.2547 & 0.5278 & 0.849 & 1.2991 & 1.6766 & 2.0096 & 2.4049 & 2.68 & 3.2651 \\\hline
50 & 0.2547 & 0.5278 & 0.8489 & 1.2987 & 1.6759 & 2.0086 & 2.4033 & 2.6778 & 3.2614 \\\hline
51 & 0.2547 & 0.5277 & 0.8487 & 1.2984 & 1.6753 & 2.0076 & 2.4017 & 2.6757 & 3.2579 \\\hline
52 & 0.2547 & 0.5276 & 0.8486 & 1.2981 & 1.6747 & 2.0066 & 2.4002 & 2.6737 & 3.2545 \\\hline
53 & 0.2546 & 0.5276 & 0.8485 & 1.2977 & 1.6741 & 2.0058 & 2.3988 & 2.6718 & 3.2513 \\\hline
54 & 0.2546 & 0.5275 & 0.8483 & 1.2974 & 1.6736 & 2.0049 & 2.3974 & 2.67 & 3.2482 \\\hline
55 & 0.2546 & 0.5275 & 0.8482 & 1.2971 & 1.673 & 2.0041 & 2.3961 & 2.6682 & 3.2452 \\\hline
56 & 0.2546 & 0.5274 & 0.8481 & 1.2969 & 1.6725 & 2.0032 & 2.3948 & 2.6665 & 3.2423 \\\hline
57 & 0.2545 & 0.5274 & 0.848 & 1.2966 & 1.672 & 2.0025 & 2.3936 & 2.6649 & 3.2395 \\\hline
58 & 0.2545 & 0.5273 & 0.8479 & 1.2963 & 1.6716 & 2.0017 & 2.3924 & 2.6633 & 3.2368 \\\hline
59 & 0.2545 & 0.5272 & 0.8478 & 1.2961 & 1.6711 & 2.001 & 2.3912 & 2.6618 & 3.2342 \\\hline
60 & 0.2545 & 0.5272 & 0.8477 & 1.2958 & 1.6707 & 2.0003 & 2.3901 & 2.6603 & 3.2317 \\\hline
61 & 0.2545 & 0.5272 & 0.8476 & 1.2956 & 1.6702 & 1.9996 & 2.3891 & 2.6589 & 3.2293 \\\hline
62 & 0.2544 & 0.5271 & 0.8475 & 1.2954 & 1.6698 & 1.999 & 2.388 & 2.6575 & 3.227 \\\hline
63 & 0.2544 & 0.5271 & 0.8474 & 1.2951 & 1.6694 & 1.9983 & 2.387 & 2.6562 & 3.2247 \\\hline
64 & 0.2544 & 0.527 & 0.8473 & 1.2949 & 1.669 & 1.9977 & 2.386 & 2.6549 & 3.2225 \\\hline
65 & 0.2544 & 0.527 & 0.8472 & 1.2947 & 1.6686 & 1.9971 & 2.3851 & 2.6536 & 3.2204 \\\hline
66 & 0.2544 & 0.5269 & 0.8471 & 1.2945 & 1.6683 & 1.9966 & 2.3842 & 2.6524 & 3.2184 \\\hline
67 & 0.2544 & 0.5269 & 0.847 & 1.2943 & 1.6679 & 1.996 & 2.3833 & 2.6512 & 3.2164 \\\hline
68 & 0.2544 & 0.5269 & 0.8469 & 1.2941 & 1.6676 & 1.9955 & 2.3824 & 2.6501 & 3.2145 \\\hline
69 & 0.2543 & 0.5268 & 0.8469 & 1.294 & 1.6672 & 1.995 & 2.3816 & 2.649 & 3.2126 \\\hline
70 & 0.2543 & 0.5268 & 0.8468 & 1.2938 & 1.6669 & 1.9944 & 2.3808 & 2.6479 & 3.2108 \\\hline
71 & 0.2543 & 0.5268 & 0.8467 & 1.2936 & 1.6666 & 1.994 & 2.38 & 2.6469 & 3.209 \\\hline
72 & 0.2543 & 0.5267 & 0.8467 & 1.2934 & 1.6663 & 1.9935 & 2.3793 & 2.6459 & 3.2073 \\\hline
73 & 0.2543 & 0.5267 & 0.8466 & 1.2933 & 1.666 & 1.993 & 2.3785 & 2.6449 & 3.2057 \\\hline
74 & 0.2543 & 0.5267 & 0.8465 & 1.2931 & 1.6657 & 1.9925 & 2.3778 & 2.6439 & 3.2041 \\\hline
75 & 0.2543 & 0.5266 & 0.8464 & 1.2929 & 1.6654 & 1.9921 & 2.3771 & 2.643 & 3.2025 \\\hline
76 & 0.2542 & 0.5266 & 0.8464 & 1.2928 & 1.6652 & 1.9917 & 2.3764 & 2.6421 & 3.201 \\\hline
77 & 0.2542 & 0.5266 & 0.8463 & 1.2926 & 1.6649 & 1.9913 & 2.3758 & 2.6412 & 3.1995 \\\hline
78 & 0.2542 & 0.5266 & 0.8463 & 1.2925 & 1.6646 & 1.9909 & 2.3751 & 2.6404 & 3.198 \\\hline
79 & 0.2542 & 0.5265 & 0.8462 & 1.2924 & 1.6644 & 1.9905 & 2.3745 & 2.6395 & 3.1966 \\\hline
80 & 0.2542 & 0.5265 & 0.8461 & 1.2922 & 1.6641 & 1.9901 & 2.3739 & 2.6387 & 3.1953 \\\hline
\end{array}
\]
\[
\begin{array}{|c|*{ 9 }{|c}|}
\hline
& 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 0.975 & 0.99 & 0.995 & 0.999 \\\hline\hline
81 & 0.2542 & 0.5265 & 0.8461 & 1.2921 & 1.6639 & 1.9897 & 2.3733 & 2.6379 & 3.1939 \\\hline
82 & 0.2542 & 0.5265 & 0.846 & 1.292 & 1.6637 & 1.9893 & 2.3727 & 2.6371 & 3.1926 \\\hline
83 & 0.2542 & 0.5264 & 0.846 & 1.2918 & 1.6634 & 1.989 & 2.3721 & 2.6364 & 3.1914 \\\hline
84 & 0.2542 & 0.5264 & 0.8459 & 1.2917 & 1.6632 & 1.9886 & 2.3716 & 2.6356 & 3.1901 \\\hline
85 & 0.2541 & 0.5264 & 0.8459 & 1.2916 & 1.663 & 1.9883 & 2.371 & 2.6349 & 3.1889 \\\hline
86 & 0.2541 & 0.5264 & 0.8458 & 1.2915 & 1.6628 & 1.988 & 2.3705 & 2.6342 & 3.1877 \\\hline
87 & 0.2541 & 0.5263 & 0.8458 & 1.2914 & 1.6626 & 1.9876 & 2.37 & 2.6335 & 3.1866 \\\hline
88 & 0.2541 & 0.5263 & 0.8457 & 1.2913 & 1.6624 & 1.9873 & 2.3695 & 2.6329 & 3.1854 \\\hline
89 & 0.2541 & 0.5263 & 0.8457 & 1.2911 & 1.6622 & 1.987 & 2.369 & 2.6322 & 3.1844 \\\hline
90 & 0.2541 & 0.5263 & 0.8457 & 1.291 & 1.662 & 1.9867 & 2.3685 & 2.6316 & 3.1833 \\\hline
91 & 0.2541 & 0.5262 & 0.8456 & 1.2909 & 1.6618 & 1.9864 & 2.368 & 2.6309 & 3.1822 \\\hline
92 & 0.2541 & 0.5262 & 0.8456 & 1.2908 & 1.6616 & 1.9861 & 2.3676 & 2.6303 & 3.1812 \\\hline
93 & 0.2541 & 0.5262 & 0.8455 & 1.2907 & 1.6614 & 1.9858 & 2.3671 & 2.6297 & 3.1802 \\\hline
94 & 0.2541 & 0.5262 & 0.8455 & 1.2906 & 1.6612 & 1.9855 & 2.3667 & 2.6292 & 3.1792 \\\hline
95 & 0.2541 & 0.5262 & 0.8454 & 1.2905 & 1.6611 & 1.9853 & 2.3663 & 2.6286 & 3.1783 \\\hline
96 & 0.2541 & 0.5261 & 0.8454 & 1.2904 & 1.6609 & 1.985 & 2.3658 & 2.628 & 3.1773 \\\hline
97 & 0.254 & 0.5261 & 0.8453 & 1.2903 & 1.6607 & 1.9847 & 2.3654 & 2.6275 & 3.1764 \\\hline
98 & 0.254 & 0.5261 & 0.8453 & 1.2903 & 1.6606 & 1.9845 & 2.365 & 2.6269 & 3.1755 \\\hline
99 & 0.254 & 0.5261 & 0.8453 & 1.2902 & 1.6604 & 1.9842 & 2.3646 & 2.6264 & 3.1746 \\\hline
100 & 0.254 & 0.5261 & 0.8452 & 1.2901 & 1.6602 & 1.984 & 2.3642 & 2.6259 & 3.1737 \\\hline
101 & 0.254 & 0.5261 & 0.8452 & 1.29 & 1.6601 & 1.9837 & 2.3638 & 2.6254 & 3.1729 \\\hline
102 & 0.254 & 0.5261 & 0.8452 & 1.2899 & 1.6599 & 1.9835 & 2.3635 & 2.6249 & 3.1721 \\\hline
103 & 0.254 & 0.526 & 0.8451 & 1.2898 & 1.6598 & 1.9833 & 2.3631 & 2.6244 & 3.1713 \\\hline
104 & 0.254 & 0.526 & 0.8451 & 1.2898 & 1.6596 & 1.983 & 2.3627 & 2.6239 & 3.1705 \\\hline
105 & 0.254 & 0.526 & 0.8451 & 1.2897 & 1.6595 & 1.9828 & 2.3624 & 2.6235 & 3.1697 \\\hline
106 & 0.254 & 0.526 & 0.845 & 1.2896 & 1.6594 & 1.9826 & 2.3621 & 2.623 & 3.1689 \\\hline
107 & 0.254 & 0.526 & 0.845 & 1.2895 & 1.6592 & 1.9824 & 2.3617 & 2.6226 & 3.1682 \\\hline
108 & 0.254 & 0.526 & 0.845 & 1.2895 & 1.6591 & 1.9822 & 2.3614 & 2.6221 & 3.1674 \\\hline
109 & 0.254 & 0.5259 & 0.8449 & 1.2894 & 1.659 & 1.982 & 2.3611 & 2.6217 & 3.1667 \\\hline
110 & 0.254 & 0.5259 & 0.8449 & 1.2893 & 1.6588 & 1.9818 & 2.3607 & 2.6213 & 3.166 \\\hline
111 & 0.254 & 0.5259 & 0.8449 & 1.2892 & 1.6587 & 1.9816 & 2.3604 & 2.6209 & 3.1653 \\\hline
112 & 0.254 & 0.5259 & 0.8449 & 1.2892 & 1.6586 & 1.9814 & 2.3601 & 2.6204 & 3.1646 \\\hline
113 & 0.254 & 0.5259 & 0.8448 & 1.2891 & 1.6585 & 1.9812 & 2.3598 & 2.62 & 3.1639 \\\hline
114 & 0.254 & 0.5259 & 0.8448 & 1.289 & 1.6583 & 1.981 & 2.3595 & 2.6197 & 3.1633 \\\hline
115 & 0.2539 & 0.5259 & 0.8448 & 1.289 & 1.6582 & 1.9808 & 2.3592 & 2.6193 & 3.1626 \\\hline
116 & 0.2539 & 0.5259 & 0.8447 & 1.2889 & 1.6581 & 1.9806 & 2.3589 & 2.6189 & 3.162 \\\hline
117 & 0.2539 & 0.5258 & 0.8447 & 1.2888 & 1.658 & 1.9805 & 2.3587 & 2.6185 & 3.1614 \\\hline
118 & 0.2539 & 0.5258 & 0.8447 & 1.2888 & 1.6579 & 1.9803 & 2.3584 & 2.6181 & 3.1607 \\\hline
119 & 0.2539 & 0.5258 & 0.8447 & 1.2887 & 1.6578 & 1.9801 & 2.3581 & 2.6178 & 3.1601 \\\hline
120 & 0.2539 & 0.5258 & 0.8446 & 1.2887 & 1.6577 & 1.9799 & 2.3578 & 2.6174 & 3.1595 \\\hline
\end{array}
\]