L'exercice suivant est automatiquement et aléatoirement généré par ataraXy.
Si vous regénérez la page (F5) les valeurs seront changées.
La correction se trouve en bas de page.
Exercice
Soit \( X=\left(\left(\dfrac{18}{5}\right)\sqrt{18}\right)-\left(\left(4\right)\sqrt{8}\right)-\left(\left(\dfrac{64}{7}\right)\sqrt{18}\right)-\left(\left(-\dfrac{11}{4}\right)\sqrt{50}-\dfrac{27}{7}+\left(\dfrac{18}{5}\right)\sqrt{18}+\left(-3\right)\sqrt{18}\right)\) et \( Y=-2+\left(-\dfrac{14}{3}\right)\sqrt{50}+\left(\dfrac{76}{5}\right)\sqrt{18}+\left(-1\right)\sqrt{8}+\left(6\right)\sqrt{4}+\left(\left(\dfrac{17}{7}\right)\sqrt{18}\right)-\dfrac{18}{7}-\left(\left(-\dfrac{11}{4}\right)\sqrt{18}\right)-\left(\left(\dfrac{56}{3}\right)\sqrt{8}\right)-\left(\left(\dfrac{67}{3}\right)\sqrt{18}\right)+\left(\left(-\dfrac{19}{2}\right)\sqrt{8}\right)-\left(\left(-\dfrac{1}{4}\right)\sqrt{8}\right)-\left(\left(-\dfrac{3}{2}\right)\sqrt{18}\right)+\left(-\dfrac{73}{3}\right)\sqrt{50}\) . Calculer et simplifier \( X+Y\) , \( X-Y\) et \( X\times Y\) .
Cliquer ici pour afficher la solution
Exercice
\begin{eqnarray*}
X+Y
&=&\left(\left(\left(\dfrac{18}{5}\right)\sqrt{18}\right)-\left(\left(4\right)\sqrt{8}\right)-\left(\left(\dfrac{64}{7}\right)\sqrt{18}\right)-\left(\left(-\dfrac{11}{4}\right)\sqrt{50}-\dfrac{27}{7}+\left(\dfrac{18}{5}\right)\sqrt{18}+\left(-3\right)\sqrt{18}\right)\right)+\left(-2+\left(-\dfrac{14}{3}\right)\sqrt{50}+\left(\dfrac{76}{5}\right)\sqrt{18}+\left(-1\right)\sqrt{8}+\left(6\right)\sqrt{4}+\left(\left(\dfrac{17}{7}\right)\sqrt{18}\right)-\dfrac{18}{7}-\left(\left(-\dfrac{11}{4}\right)\sqrt{18}\right)-\left(\left(\dfrac{56}{3}\right)\sqrt{8}\right)-\left(\left(\dfrac{67}{3}\right)\sqrt{18}\right)+\left(\left(-\dfrac{19}{2}\right)\sqrt{8}\right)-\left(\left(-\dfrac{1}{4}\right)\sqrt{8}\right)-\left(\left(-\dfrac{3}{2}\right)\sqrt{18}\right)+\left(-\dfrac{73}{3}\right)\sqrt{50}\right)\\
&=&\left(\left(\left(\dfrac{54}{5}\right)\sqrt{2}\right)-\left(\left(8\right)\sqrt{2}\right)-\left(\left(\dfrac{192}{7}\right)\sqrt{2}\right)-\left(\left(-\dfrac{55}{4}\right)\sqrt{2}-\dfrac{27}{7}+\left(\dfrac{54}{5}\right)\sqrt{2}+\left(-9\right)\sqrt{2}\right)\right)+\left(-2+\left(-\dfrac{70}{3}\right)\sqrt{2}+\left(\dfrac{228}{5}\right)\sqrt{2}+\left(-2\right)\sqrt{2}+12+\left(\left(\dfrac{51}{7}\right)\sqrt{2}\right)-\dfrac{18}{7}-\left(\left(-\dfrac{33}{4}\right)\sqrt{2}\right)-\left(\left(\dfrac{112}{3}\right)\sqrt{2}\right)-\left(\left(67\right)\sqrt{2}\right)+\left(\left(-19\right)\sqrt{2}\right)-\left(\left(-\dfrac{1}{2}\right)\sqrt{2}\right)-\left(\left(-\dfrac{9}{2}\right)\sqrt{2}\right)+\left(-\dfrac{365}{3}\right)\sqrt{2}\right)\\
&=&\left(\left(\dfrac{54}{5}\right)\sqrt{2}\right)-\left(\left(8\right)\sqrt{2}\right)-\left(\left(\dfrac{192}{7}\right)\sqrt{2}\right)-\left(\left(-\dfrac{55}{4}\right)\sqrt{2}-\dfrac{27}{7}+\left(\dfrac{54}{5}\right)\sqrt{2}+\left(-9\right)\sqrt{2}\right)-2+\left(-\dfrac{70}{3}\right)\sqrt{2}+\left(\dfrac{228}{5}\right)\sqrt{2}+\left(-2\right)\sqrt{2}+12+\left(\left(\dfrac{51}{7}\right)\sqrt{2}\right)-\dfrac{18}{7}-\left(\left(-\dfrac{33}{4}\right)\sqrt{2}\right)-\left(\left(\dfrac{112}{3}\right)\sqrt{2}\right)-\left(\left(67\right)\sqrt{2}\right)+\left(\left(-19\right)\sqrt{2}\right)-\left(\left(-\dfrac{1}{2}\right)\sqrt{2}\right)-\left(\left(-\dfrac{9}{2}\right)\sqrt{2}\right)+\left(-\dfrac{365}{3}\right)\sqrt{2}\\
&=&\left(-\dfrac{22772}{105}\right)\sqrt{2}+\dfrac{79}{7}\\
\end{eqnarray*}
\begin{eqnarray*}
X-Y
&=&\left(\left(\left(\dfrac{18}{5}\right)\sqrt{18}\right)-\left(\left(4\right)\sqrt{8}\right)-\left(\left(\dfrac{64}{7}\right)\sqrt{18}\right)-\left(\left(-\dfrac{11}{4}\right)\sqrt{50}-\dfrac{27}{7}+\left(\dfrac{18}{5}\right)\sqrt{18}+\left(-3\right)\sqrt{18}\right)\right)-\left(-2+\left(-\dfrac{14}{3}\right)\sqrt{50}+\left(\dfrac{76}{5}\right)\sqrt{18}+\left(-1\right)\sqrt{8}+\left(6\right)\sqrt{4}+\left(\left(\dfrac{17}{7}\right)\sqrt{18}\right)-\dfrac{18}{7}-\left(\left(-\dfrac{11}{4}\right)\sqrt{18}\right)-\left(\left(\dfrac{56}{3}\right)\sqrt{8}\right)-\left(\left(\dfrac{67}{3}\right)\sqrt{18}\right)+\left(\left(-\dfrac{19}{2}\right)\sqrt{8}\right)-\left(\left(-\dfrac{1}{4}\right)\sqrt{8}\right)-\left(\left(-\dfrac{3}{2}\right)\sqrt{18}\right)+\left(-\dfrac{73}{3}\right)\sqrt{50}\right)\\
&=&\left(\left(\left(\dfrac{54}{5}\right)\sqrt{2}\right)-\left(\left(8\right)\sqrt{2}\right)-\left(\left(\dfrac{192}{7}\right)\sqrt{2}\right)-\left(\left(-\dfrac{55}{4}\right)\sqrt{2}-\dfrac{27}{7}+\left(\dfrac{54}{5}\right)\sqrt{2}+\left(-9\right)\sqrt{2}\right)\right)-\left(-2+\left(-\dfrac{70}{3}\right)\sqrt{2}+\left(\dfrac{228}{5}\right)\sqrt{2}+\left(-2\right)\sqrt{2}+12+\left(\left(\dfrac{51}{7}\right)\sqrt{2}\right)-\dfrac{18}{7}-\left(\left(-\dfrac{33}{4}\right)\sqrt{2}\right)-\left(\left(\dfrac{112}{3}\right)\sqrt{2}\right)-\left(\left(67\right)\sqrt{2}\right)+\left(\left(-19\right)\sqrt{2}\right)-\left(\left(-\dfrac{1}{2}\right)\sqrt{2}\right)-\left(\left(-\dfrac{9}{2}\right)\sqrt{2}\right)+\left(-\dfrac{365}{3}\right)\sqrt{2}\right)\\
&=&\left(\left(-\dfrac{355}{28}\right)\sqrt{2}+\dfrac{27}{7}\right)-\left(\dfrac{52}{7}+\left(-\dfrac{85763}{420}\right)\sqrt{2}\right)\\
&=&\left(-\dfrac{355}{28}\right)\sqrt{2}+\dfrac{27}{7}+-\dfrac{52}{7}+\left(\dfrac{85763}{420}\right)\sqrt{2}\\
&=&\left(\dfrac{40219}{210}\right)\sqrt{2}-\dfrac{25}{7}\\
\end{eqnarray*}
\begin{eqnarray*}
X\times Y
&=&\left(\left(\left(\dfrac{18}{5}\right)\sqrt{18}\right)-\left(\left(4\right)\sqrt{8}\right)-\left(\left(\dfrac{64}{7}\right)\sqrt{18}\right)-\left(\left(-\dfrac{11}{4}\right)\sqrt{50}-\dfrac{27}{7}+\left(\dfrac{18}{5}\right)\sqrt{18}+\left(-3\right)\sqrt{18}\right)\right)\times\left(-2+\left(-\dfrac{14}{3}\right)\sqrt{50}+\left(\dfrac{76}{5}\right)\sqrt{18}+\left(-1\right)\sqrt{8}+\left(6\right)\sqrt{4}+\left(\left(\dfrac{17}{7}\right)\sqrt{18}\right)-\dfrac{18}{7}-\left(\left(-\dfrac{11}{4}\right)\sqrt{18}\right)-\left(\left(\dfrac{56}{3}\right)\sqrt{8}\right)-\left(\left(\dfrac{67}{3}\right)\sqrt{18}\right)+\left(\left(-\dfrac{19}{2}\right)\sqrt{8}\right)-\left(\left(-\dfrac{1}{4}\right)\sqrt{8}\right)-\left(\left(-\dfrac{3}{2}\right)\sqrt{18}\right)+\left(-\dfrac{73}{3}\right)\sqrt{50}\right)\\
&=&\left(\left(\left(\dfrac{54}{5}\right)\sqrt{2}\right)-\left(\left(8\right)\sqrt{2}\right)-\left(\left(\dfrac{192}{7}\right)\sqrt{2}\right)-\left(\left(-\dfrac{55}{4}\right)\sqrt{2}-\dfrac{27}{7}+\left(\dfrac{54}{5}\right)\sqrt{2}+\left(-9\right)\sqrt{2}\right)\right)\times\left(-2+\left(-\dfrac{70}{3}\right)\sqrt{2}+\left(\dfrac{228}{5}\right)\sqrt{2}+\left(-2\right)\sqrt{2}+12+\left(\left(\dfrac{51}{7}\right)\sqrt{2}\right)-\dfrac{18}{7}-\left(\left(-\dfrac{33}{4}\right)\sqrt{2}\right)-\left(\left(\dfrac{112}{3}\right)\sqrt{2}\right)-\left(\left(67\right)\sqrt{2}\right)+\left(\left(-19\right)\sqrt{2}\right)-\left(\left(-\dfrac{1}{2}\right)\sqrt{2}\right)-\left(\left(-\dfrac{9}{2}\right)\sqrt{2}\right)+\left(-\dfrac{365}{3}\right)\sqrt{2}\right)\\
&=&\left(\left(-\dfrac{355}{28}\right)\sqrt{2}+\dfrac{27}{7}\right)\left(\dfrac{52}{7}+\left(-\dfrac{85763}{420}\right)\sqrt{2}\right)\\
&=&\left(-\dfrac{864167}{980}\right)\sqrt{2}+\left(\dfrac{6089173}{2352}\right)\sqrt{4}+\dfrac{1404}{49}\\
&=&\left(-\dfrac{864167}{980}\right)\sqrt{2}+\dfrac{6122869}{1176}\\
\end{eqnarray*}