\( %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Mes commandes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\multirows}[3]{\multirow{#1}{#2}{$#3$}}%pour rester en mode math \renewcommand{\arraystretch}{1.3}%pour augmenter la taille des case \newcommand{\point}[1]{\marginnote{\small\vspace*{-1em} #1}}%pour indiquer les points ou le temps \newcommand{\dpl}[1]{\displaystyle{#1}}%megamode \newcommand{\A}{\mathscr{A}} \newcommand{\LN}{\mathscr{N}} \newcommand{\LL}{\mathscr{L}} \newcommand{\K}{\mathbb{K}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\M}{\mathcal{M}} \newcommand{\D}{\mathbb{D}} \newcommand{\E}{\mathcal{E}} \renewcommand{\P}{\mathcal{P}} \newcommand{\G}{\mathcal{G}} \newcommand{\Kk}{\mathcal{K}} \newcommand{\Cc}{\mathcal{C}} \newcommand{\Zz}{\mathcal{Z}} \newcommand{\Ss}{\mathcal{S}} \newcommand{\B}{\mathbb{B}} \newcommand{\inde}{\bot\!\!\!\bot} \newcommand{\Proba}{\mathbb{P}} \newcommand{\Esp}[1]{\dpl{\mathbb{E}\left(#1\right)}} \newcommand{\Var}[1]{\dpl{\mathbb{V}\left(#1\right)}} \newcommand{\Cov}[1]{\dpl{Cov\left(#1\right)}} \newcommand{\base}{\mathcal{B}} \newcommand{\Som}{\textbf{Som}} \newcommand{\Chain}{\textbf{Chain}} \newcommand{\Ar}{\textbf{Ar}} \newcommand{\Arc}{\textbf{Arc}} \newcommand{\Min}{\text{Min}} \newcommand{\Max}{\text{Max}} \newcommand{\Ker}{\text{Ker}} \renewcommand{\Im}{\text{Im}} \newcommand{\Sup}{\text{Sup}} \newcommand{\Inf}{\text{Inf}} \renewcommand{\det}{\texttt{det}} \newcommand{\GL}{\text{GL}} \newcommand{\crossmark}{\text{\ding{55}}} \renewcommand{\checkmark}{\text{\ding{51}}} \newcommand{\Card}{\sharp} \newcommand{\Surligne}[2]{\text{\colorbox{#1}{ #2 }}} \newcommand{\SurligneMM}[2]{\text{\colorbox{#1}{ #2 }}} \newcommand{\norm}[1]{\left\lVert#1\right\rVert} \renewcommand{\lim}[1]{\underset{#1}{lim}\,} \newcommand{\nonor}[1]{\left|#1\right|} \newcommand{\Un}{1\!\!1} \newcommand{\sepon}{\setlength{\columnseprule}{0.5pt}} \newcommand{\sepoff}{\setlength{\columnseprule}{0pt}} \newcommand{\flux}{Flux} \newcommand{\Cpp}{\texttt{C++\ }} \newcommand{\Python}{\texttt{Python\ }} %\newcommand{\comb}[2]{\begin{pmatrix} #1\\ #2\end{pmatrix}} \newcommand{\comb}[2]{C_{#1}^{#2}} \newcommand{\arrang}[2]{A_{#1}^{#2}} \newcommand{\supp}[1]{Supp\left(#1\right)} \newcommand{\BB}{\mathcal{B}} \newcommand{\arc}[1]{\overset{\rotatebox{90}{)}}{#1}} \newcommand{\modpi}{\equiv_{2\pi}} \renewcommand{\Re}{Re} \renewcommand{\Im}{Im} \renewcommand{\bar}[1]{\overline{#1}} \newcommand{\mat}{\mathcal{M}} \newcommand{\und}[1]{{\mathbf{\color{red}\underline{#1}}}} \newcommand{\rdots}{\text{\reflectbox{$\ddots$}}} \newcommand{\Compa}{Compa} \newcommand{\dint}{\dpl{\int}} \newcommand{\intEFF}[2]{\left[\!\left[#1 ; #2\right]\!\right]} \newcommand{\intEFO}[2]{\left[\!\left[#1 ; #2\right[\!\right[} \newcommand{\intEOF}[2]{\left]\!\left]#1 ; #2\right]\!\right]} \newcommand{\intEOO}[2]{\left]\!\left]#1 ; #2\right[\!\right[} \newcommand{\ou}{\vee} \newcommand{\et}{\wedge} \newcommand{\non}{\neg} \newcommand{\implique}{\Rightarrow} \newcommand{\equivalent}{\Leftrightarrow} \newcommand{\Ab}{\overline{A}} \newcommand{\Bb}{\overline{B}} \newcommand{\Cb}{\overline{C}} \newcommand{\Cl}{\texttt{Cl}} \newcommand{\ab}{\overline{a}} \newcommand{\bb}{\overline{b}} \newcommand{\cb}{\overline{c}} \newcommand{\Rel}{\mathcal{R}} \newcommand{\superepsilon}{\varepsilon\!\!\varepsilon} \newcommand{\supere}{e\!\!e} \makeatletter \newenvironment{console}{\noindent\color{white}\begin{lrbox}{\@tempboxa}\begin{minipage}{\columnwidth} \ttfamily \bfseries\vspace*{0.5cm}} {\vspace*{0.5cm}\end{minipage}\end{lrbox}\colorbox{black}{\usebox{\@tempboxa}} } \makeatother \def\ie{\textit{i.e. }} \def\cf{\textit{c.f. }} \def\vide{ { $ {\text{ }} $ } } %Commande pour les vecteurs \newcommand{\grad}{\overrightarrow{Grad}} \newcommand{\Vv}{\overrightarrow{v}} \newcommand{\Vu}{\overrightarrow{u}} \newcommand{\Vw}{\overrightarrow{w}} \newcommand{\Vup}{\overrightarrow{u'}} \newcommand{\Zero}{\overrightarrow{0}} \newcommand{\Vx}{\overrightarrow{x}} \newcommand{\Vy}{\overrightarrow{y}} \newcommand{\Vz}{\overrightarrow{z}} \newcommand{\Vt}{\overrightarrow{t}} \newcommand{\Va}{\overrightarrow{a}} \newcommand{\Vb}{\overrightarrow{b}} \newcommand{\Vc}{\overrightarrow{c}} \newcommand{\Vd}{\overrightarrow{d}} \newcommand{\Ve}[1]{\overrightarrow{e_{#1}}} \newcommand{\Vf}[1]{\overrightarrow{f_{#1}}} \newcommand{\Vn}{\overrightarrow{0}} \newcommand{\Mat}{Mat} \newcommand{\Pass}{Pass} \newcommand{\mkF}{\mathfrak{F}} \renewcommand{\sp}{Sp} \newcommand{\Co}{Co} \newcommand{\vect}[1]{\texttt{Vect}\dpl{\left( #1\right)}} \newcommand{\prodscal}[2]{\dpl{\left\langle #1\left|\vphantom{#1 #2}\right. #2\right\rangle}} \newcommand{\trans}[1]{{\vphantom{#1}}^{t}{#1}} \newcommand{\ortho}[1]{{#1}^{\bot}} \newcommand{\oplusbot}{\overset{\bot}{\oplus}} \SelectTips{cm}{12}%Change le bout des flèches dans un xymatrix \newcommand{\pourDES}[8]{ \begin{itemize} \item Pour la ligne : le premier et dernier caractère forment $#1#2$ soit $#4$ en base 10. \item Pour la colonne : les autres caractères du bloc forment $#3$ soit $#5$ en base 10. \item A l'intersection de la ligne $#4+1$ et de la colonne $#5+1$ de $S_{#8}$ se trouve l'entier $#6$ qui, codé sur $4$ bits, est \textbf{\texttt{$#7$}}. \end{itemize} } \)
Exercice

L'exercice suivant est automatiquement et aléatoirement généré par ataraXy.
Si vous regénérez la page (F5) les valeurs seront changées.
La correction se trouve en bas de page.


Exercice


  1. Calculer l'inverse modulaire de \( 2159\) modulo \( 2526\) .
  2. Calculer le déterminant de la matrice \( A = \begin{pmatrix}2281 & 1862 \\ 1600 & 1585\end{pmatrix}\) .
  3. Expliquer pourquoi la matrice \( A \) est inversible modulo \( 2526\) .
  4. Déterminer l'inverse de la matrice \( A \) .
  5. Déchiffrer le message suivant, crypté par la méthode de Hill par paquet de 2 de clef \( A \) : \[1750-697-561-1472\]
Cliquer ici pour afficher la solution

Exercice


  1. \[\begin{array}{|c|c|c|c||c|c|}\hline a&b&r&q&u&v \\ \hline 2526 & 2159 & 367 & 1&-753 & 881 \\ \hline 2159 & 367 & 324 & 5&128 & -753 \\ \hline 367 & 324 & 43 & 1&-113 & 128 \\ \hline 324 & 43 & 23 & 7&15 & -113 \\ \hline 43 & 23 & 20 & 1&-8 & 15 \\ \hline 23 & 20 & 3 & 1&7 & -8 \\ \hline 20 & 3 & 2 & 6&-1 & 7 \\ \hline 3 & 2 & 1 & 1&1 & -1 \\ \hline 2 & 1 & 0 & 2&0 & 1 \\ \hline \end{array}\] L'algorithme d'Euclide étendu, montre que l'inverse modulaire de \( 2159\) est \( 881\) .
  2. D'après le cours \( det(A)= 636185\equiv_{2526}2159\) .
  3. La matrice \( A \) est inversible car le déterminant est inversible modulo \( 2526\) .
  4. D'après le cours : \[ \begin{pmatrix}2281 & 1862 \\ 1600 & 1585\end{pmatrix}^{-1} \equiv_{2526} 881\begin{pmatrix}1585 & -1862 \\ -1600 & 2281\end{pmatrix} \equiv_{2526}\begin{pmatrix}1396385 & -1640422 \\ -1409600 & 2009561\end{pmatrix} \equiv_{2526}\begin{pmatrix}2033 & -1048 \\ -92 & 1391\end{pmatrix} \]
  5. \[\begin{array}{r|*{4}{|c}} Cryptogramme & 1750 & 697 & 561 & 1472\\\hline Vecteurs & &{ \begin{pmatrix}1750 \\ 697\end{pmatrix} } & &{ \begin{pmatrix}561 \\ 1472\end{pmatrix} }\\\hline\begin{pmatrix}2033 & -1048 \\ -92 & 1391\end{pmatrix} & &{ \begin{pmatrix}2827294 \\ 808527\end{pmatrix} } & &{ \begin{pmatrix}-402143 \\ 1995940\end{pmatrix} }\\\hline\equiv_{2526} & &{ \begin{pmatrix}700 \\ 207\end{pmatrix} } & &{ \begin{pmatrix}2017 \\ 400\end{pmatrix} }\\\hline & 700 & 207 & 2017 & 400\\\hline Message & HA & CH & UR & EA\end{array}\]Le message claire est \( HACHUREA \) .