L'exercice suivant est automatiquement et aléatoirement généré par ataraXy.
Si vous regénérez la page (F5) les valeurs seront changées.
La correction se trouve en bas de page.
Exercice
Soit \( X=\dfrac{3}{2}-\left(\left(\left(-\dfrac{36}{5}\right)\sqrt{25}\right)-\left(\left(-\dfrac{17}{2}\right)\sqrt{20}\right)\right)\) et \( Y=\left(\dfrac{36}{5}\right)\sqrt{25}+\left(1\right)\sqrt{20}+\dfrac{23}{4}\) . Calculer et simplifier \( X+Y\) , \( X-Y\) et \( X\times Y\) .
Cliquer ici pour afficher la solution
Exercice
\begin{eqnarray*}
X+Y
&=&\left(\dfrac{3}{2}-\left(\left(\left(-\dfrac{36}{5}\right)\sqrt{25}\right)-\left(\left(-\dfrac{17}{2}\right)\sqrt{20}\right)\right)\right)+\left(\left(\dfrac{36}{5}\right)\sqrt{25}+\left(1\right)\sqrt{20}+\dfrac{23}{4}\right)\\
&=&\left(\dfrac{3}{2}-\left(-36-\left(\left(-17\right)\sqrt{5}\right)\right)\right)+\left(36+\left(2\right)\sqrt{5}+\dfrac{23}{4}\right)\\
&=&\dfrac{3}{2}-\left(-36-\left(\left(-17\right)\sqrt{5}\right)\right)+36+\left(2\right)\sqrt{5}+\dfrac{23}{4}\\
&=&\dfrac{317}{4}+\left(-15\right)\sqrt{5}\\
\end{eqnarray*}
\begin{eqnarray*}
X-Y
&=&\left(\dfrac{3}{2}-\left(\left(\left(-\dfrac{36}{5}\right)\sqrt{25}\right)-\left(\left(-\dfrac{17}{2}\right)\sqrt{20}\right)\right)\right)-\left(\left(\dfrac{36}{5}\right)\sqrt{25}+\left(1\right)\sqrt{20}+\dfrac{23}{4}\right)\\
&=&\left(\dfrac{3}{2}-\left(-36-\left(\left(-17\right)\sqrt{5}\right)\right)\right)-\left(36+\left(2\right)\sqrt{5}+\dfrac{23}{4}\right)\\
&=&\left(\dfrac{75}{2}+\left(-17\right)\sqrt{5}\right)-\left(\dfrac{167}{4}+\left(2\right)\sqrt{5}\right)\\
&=&\dfrac{75}{2}+\left(-17\right)\sqrt{5}+-\dfrac{167}{4}+\left(-2\right)\sqrt{5}\\
&=&-\dfrac{17}{4}+\left(-19\right)\sqrt{5}\\
\end{eqnarray*}
\begin{eqnarray*}
X\times Y
&=&\left(\dfrac{3}{2}-\left(\left(\left(-\dfrac{36}{5}\right)\sqrt{25}\right)-\left(\left(-\dfrac{17}{2}\right)\sqrt{20}\right)\right)\right)\times\left(\left(\dfrac{36}{5}\right)\sqrt{25}+\left(1\right)\sqrt{20}+\dfrac{23}{4}\right)\\
&=&\left(\dfrac{3}{2}-\left(-36-\left(\left(-17\right)\sqrt{5}\right)\right)\right)\times\left(36+\left(2\right)\sqrt{5}+\dfrac{23}{4}\right)\\
&=&\left(\dfrac{75}{2}+\left(-17\right)\sqrt{5}\right)\left(\dfrac{167}{4}+\left(2\right)\sqrt{5}\right)\\
&=&\dfrac{12525}{8}+\left(-\dfrac{2539}{4}\right)\sqrt{5}+\left(-34\right)\sqrt{25}\\
&=&\dfrac{11165}{8}+\left(-\dfrac{2539}{4}\right)\sqrt{5}\\
\end{eqnarray*}