L'exercice suivant est automatiquement et aléatoirement généré par ataraXy.
Si vous regénérez la page (F5) les valeurs seront changées.
La correction se trouve en bas de page.
Exercice
Soit \( X=\left(-\dfrac{26}{9}\right)\sqrt{45}+\left(\dfrac{76}{3}\right)\sqrt{125}+\left(-\dfrac{23}{3}\right)\sqrt{25}+\left(-\dfrac{31}{2}\right)\sqrt{125}-\dfrac{23}{2}+\left(-\dfrac{68}{9}\right)\sqrt{45}+\left(\left(-\dfrac{23}{2}\right)\sqrt{25}\right)-\left(\left(-\dfrac{23}{3}\right)\sqrt{25}\right)+\left(\left(-\dfrac{52}{3}\right)\sqrt{20}\right)-\left(\left(8\right)\sqrt{45}\right)+\dfrac{23}{4}-\left(\left(3\right)\sqrt{25}\right)-\left(\left(-4\right)\sqrt{125}\right)-\dfrac{68}{3}\) et \( Y=\left(\dfrac{52}{9}\right)\sqrt{20}+\left(8\right)\sqrt{125}-8-\dfrac{75}{2}+\left(-7\right)\sqrt{125}+\left(-\dfrac{15}{2}\right)\sqrt{125}+\left(9\right)\sqrt{20}+\left(8\right)\sqrt{125}+\left(-\dfrac{49}{4}\right)\sqrt{45}+\dfrac{21}{8}\) . Calculer et simplifier \( X+Y\) , \( X-Y\) et \( X\times Y\) .
Cliquer ici pour afficher la solution
Exercice
\begin{eqnarray*}
X+Y
&=&\left(\left(-\dfrac{26}{9}\right)\sqrt{45}+\left(\dfrac{76}{3}\right)\sqrt{125}+\left(-\dfrac{23}{3}\right)\sqrt{25}+\left(-\dfrac{31}{2}\right)\sqrt{125}-\dfrac{23}{2}+\left(-\dfrac{68}{9}\right)\sqrt{45}+\left(\left(-\dfrac{23}{2}\right)\sqrt{25}\right)-\left(\left(-\dfrac{23}{3}\right)\sqrt{25}\right)+\left(\left(-\dfrac{52}{3}\right)\sqrt{20}\right)-\left(\left(8\right)\sqrt{45}\right)+\dfrac{23}{4}-\left(\left(3\right)\sqrt{25}\right)-\left(\left(-4\right)\sqrt{125}\right)-\dfrac{68}{3}\right)+\left(\left(\dfrac{52}{9}\right)\sqrt{20}+\left(8\right)\sqrt{125}-8-\dfrac{75}{2}+\left(-7\right)\sqrt{125}+\left(-\dfrac{15}{2}\right)\sqrt{125}+\left(9\right)\sqrt{20}+\left(8\right)\sqrt{125}+\left(-\dfrac{49}{4}\right)\sqrt{45}+\dfrac{21}{8}\right)\\
&=&\left(\left(-\dfrac{26}{3}\right)\sqrt{5}+\left(\dfrac{380}{3}\right)\sqrt{5}-\dfrac{115}{3}+\left(-\dfrac{155}{2}\right)\sqrt{5}-\dfrac{23}{2}+\left(-\dfrac{68}{3}\right)\sqrt{5}-\dfrac{115}{2}+\dfrac{115}{3}+\left(\left(-\dfrac{104}{3}\right)\sqrt{5}\right)-\left(\left(24\right)\sqrt{5}\right)+\dfrac{23}{4}-15-\left(\left(-20\right)\sqrt{5}\right)-\dfrac{68}{3}\right)+\left(\left(\dfrac{104}{9}\right)\sqrt{5}+\left(40\right)\sqrt{5}-8-\dfrac{75}{2}+\left(-35\right)\sqrt{5}+\left(-\dfrac{75}{2}\right)\sqrt{5}+\left(18\right)\sqrt{5}+\left(40\right)\sqrt{5}+\left(-\dfrac{147}{4}\right)\sqrt{5}+\dfrac{21}{8}\right)\\
&=&\left(-\dfrac{26}{3}\right)\sqrt{5}+\left(\dfrac{380}{3}\right)\sqrt{5}-\dfrac{115}{3}+\left(-\dfrac{155}{2}\right)\sqrt{5}-\dfrac{23}{2}+\left(-\dfrac{68}{3}\right)\sqrt{5}-\dfrac{115}{2}+\dfrac{115}{3}+\left(\left(-\dfrac{104}{3}\right)\sqrt{5}\right)-\left(\left(24\right)\sqrt{5}\right)+\dfrac{23}{4}-15-\left(\left(-20\right)\sqrt{5}\right)-\dfrac{68}{3}+\left(\dfrac{104}{9}\right)\sqrt{5}+\left(40\right)\sqrt{5}-8-\dfrac{75}{2}+\left(-35\right)\sqrt{5}+\left(-\dfrac{75}{2}\right)\sqrt{5}+\left(18\right)\sqrt{5}+\left(40\right)\sqrt{5}+\left(-\dfrac{147}{4}\right)\sqrt{5}+\dfrac{21}{8}\\
&=&\left(-\dfrac{739}{36}\right)\sqrt{5}-\dfrac{3451}{24}\\
\end{eqnarray*}
\begin{eqnarray*}
X-Y
&=&\left(\left(-\dfrac{26}{9}\right)\sqrt{45}+\left(\dfrac{76}{3}\right)\sqrt{125}+\left(-\dfrac{23}{3}\right)\sqrt{25}+\left(-\dfrac{31}{2}\right)\sqrt{125}-\dfrac{23}{2}+\left(-\dfrac{68}{9}\right)\sqrt{45}+\left(\left(-\dfrac{23}{2}\right)\sqrt{25}\right)-\left(\left(-\dfrac{23}{3}\right)\sqrt{25}\right)+\left(\left(-\dfrac{52}{3}\right)\sqrt{20}\right)-\left(\left(8\right)\sqrt{45}\right)+\dfrac{23}{4}-\left(\left(3\right)\sqrt{25}\right)-\left(\left(-4\right)\sqrt{125}\right)-\dfrac{68}{3}\right)-\left(\left(\dfrac{52}{9}\right)\sqrt{20}+\left(8\right)\sqrt{125}-8-\dfrac{75}{2}+\left(-7\right)\sqrt{125}+\left(-\dfrac{15}{2}\right)\sqrt{125}+\left(9\right)\sqrt{20}+\left(8\right)\sqrt{125}+\left(-\dfrac{49}{4}\right)\sqrt{45}+\dfrac{21}{8}\right)\\
&=&\left(\left(-\dfrac{26}{3}\right)\sqrt{5}+\left(\dfrac{380}{3}\right)\sqrt{5}-\dfrac{115}{3}+\left(-\dfrac{155}{2}\right)\sqrt{5}-\dfrac{23}{2}+\left(-\dfrac{68}{3}\right)\sqrt{5}-\dfrac{115}{2}+\dfrac{115}{3}+\left(\left(-\dfrac{104}{3}\right)\sqrt{5}\right)-\left(\left(24\right)\sqrt{5}\right)+\dfrac{23}{4}-15-\left(\left(-20\right)\sqrt{5}\right)-\dfrac{68}{3}\right)-\left(\left(\dfrac{104}{9}\right)\sqrt{5}+\left(40\right)\sqrt{5}-8-\dfrac{75}{2}+\left(-35\right)\sqrt{5}+\left(-\dfrac{75}{2}\right)\sqrt{5}+\left(18\right)\sqrt{5}+\left(40\right)\sqrt{5}+\left(-\dfrac{147}{4}\right)\sqrt{5}+\dfrac{21}{8}\right)\\
&=&\left(\left(-\dfrac{125}{6}\right)\sqrt{5}-\dfrac{1211}{12}\right)-\left(\left(\dfrac{11}{36}\right)\sqrt{5}-\dfrac{343}{8}\right)\\
&=&\left(-\dfrac{125}{6}\right)\sqrt{5}-\dfrac{1211}{12}+\left(-\dfrac{11}{36}\right)\sqrt{5}+\dfrac{343}{8}\\
&=&\left(-\dfrac{761}{36}\right)\sqrt{5}-\dfrac{1393}{24}\\
\end{eqnarray*}
\begin{eqnarray*}
X\times Y
&=&\left(\left(-\dfrac{26}{9}\right)\sqrt{45}+\left(\dfrac{76}{3}\right)\sqrt{125}+\left(-\dfrac{23}{3}\right)\sqrt{25}+\left(-\dfrac{31}{2}\right)\sqrt{125}-\dfrac{23}{2}+\left(-\dfrac{68}{9}\right)\sqrt{45}+\left(\left(-\dfrac{23}{2}\right)\sqrt{25}\right)-\left(\left(-\dfrac{23}{3}\right)\sqrt{25}\right)+\left(\left(-\dfrac{52}{3}\right)\sqrt{20}\right)-\left(\left(8\right)\sqrt{45}\right)+\dfrac{23}{4}-\left(\left(3\right)\sqrt{25}\right)-\left(\left(-4\right)\sqrt{125}\right)-\dfrac{68}{3}\right)\times\left(\left(\dfrac{52}{9}\right)\sqrt{20}+\left(8\right)\sqrt{125}-8-\dfrac{75}{2}+\left(-7\right)\sqrt{125}+\left(-\dfrac{15}{2}\right)\sqrt{125}+\left(9\right)\sqrt{20}+\left(8\right)\sqrt{125}+\left(-\dfrac{49}{4}\right)\sqrt{45}+\dfrac{21}{8}\right)\\
&=&\left(\left(-\dfrac{26}{3}\right)\sqrt{5}+\left(\dfrac{380}{3}\right)\sqrt{5}-\dfrac{115}{3}+\left(-\dfrac{155}{2}\right)\sqrt{5}-\dfrac{23}{2}+\left(-\dfrac{68}{3}\right)\sqrt{5}-\dfrac{115}{2}+\dfrac{115}{3}+\left(\left(-\dfrac{104}{3}\right)\sqrt{5}\right)-\left(\left(24\right)\sqrt{5}\right)+\dfrac{23}{4}-15-\left(\left(-20\right)\sqrt{5}\right)-\dfrac{68}{3}\right)\times\left(\left(\dfrac{104}{9}\right)\sqrt{5}+\left(40\right)\sqrt{5}-8-\dfrac{75}{2}+\left(-35\right)\sqrt{5}+\left(-\dfrac{75}{2}\right)\sqrt{5}+\left(18\right)\sqrt{5}+\left(40\right)\sqrt{5}+\left(-\dfrac{147}{4}\right)\sqrt{5}+\dfrac{21}{8}\right)\\
&=&\left(\left(-\dfrac{125}{6}\right)\sqrt{5}-\dfrac{1211}{12}\right)\left(\left(\dfrac{11}{36}\right)\sqrt{5}-\dfrac{343}{8}\right)\\
&=&\left(-\dfrac{1375}{216}\right)\sqrt{25}+\left(\dfrac{186277}{216}\right)\sqrt{5}+\dfrac{415373}{96}\\
&=&\dfrac{3710857}{864}+\left(\dfrac{186277}{216}\right)\sqrt{5}\\
\end{eqnarray*}