L'exercice suivant est automatiquement et aléatoirement généré par ataraXy.
Si vous regénérez la page (F5) les valeurs seront changées.
La correction se trouve en bas de page.
Exercice
Soit \( X=\left(-4\right)\sqrt{25}+\left(\dfrac{33}{2}\right)\sqrt{25}-\dfrac{43}{9}+\left(-7\right)\sqrt{125}+\left(\dfrac{33}{2}\right)\sqrt{25}+\left(-\dfrac{23}{3}\right)\sqrt{125}+\left(\left(-\dfrac{12}{7}\right)\sqrt{125}\right)-\left(\left(\dfrac{48}{5}\right)\sqrt{125}\right)-\left(\left(\dfrac{13}{2}\right)\sqrt{45}\right)-\left(\left(-\dfrac{64}{9}\right)\sqrt{20}\right)+\left(-\dfrac{79}{7}\right)\sqrt{125}+\left(\dfrac{70}{9}\right)\sqrt{45}\) et \( Y=\left(-6\right)\sqrt{45}+\left(\left(\dfrac{65}{2}\right)\sqrt{125}\right)-\left(\left(1\right)\sqrt{20}\right)-\left(\left(\dfrac{81}{4}\right)\sqrt{25}\right)-\left(\left(\dfrac{22}{5}\right)\sqrt{20}\right)+\left(\dfrac{5}{3}\right)\sqrt{45}\) . Calculer et simplifier \( X+Y\) , \( X-Y\) et \( X\times Y\) .
Cliquer ici pour afficher la solution
Exercice
\begin{eqnarray*}
X+Y
&=&\left(\left(-4\right)\sqrt{25}+\left(\dfrac{33}{2}\right)\sqrt{25}-\dfrac{43}{9}+\left(-7\right)\sqrt{125}+\left(\dfrac{33}{2}\right)\sqrt{25}+\left(-\dfrac{23}{3}\right)\sqrt{125}+\left(\left(-\dfrac{12}{7}\right)\sqrt{125}\right)-\left(\left(\dfrac{48}{5}\right)\sqrt{125}\right)-\left(\left(\dfrac{13}{2}\right)\sqrt{45}\right)-\left(\left(-\dfrac{64}{9}\right)\sqrt{20}\right)+\left(-\dfrac{79}{7}\right)\sqrt{125}+\left(\dfrac{70}{9}\right)\sqrt{45}\right)+\left(\left(-6\right)\sqrt{45}+\left(\left(\dfrac{65}{2}\right)\sqrt{125}\right)-\left(\left(1\right)\sqrt{20}\right)-\left(\left(\dfrac{81}{4}\right)\sqrt{25}\right)-\left(\left(\dfrac{22}{5}\right)\sqrt{20}\right)+\left(\dfrac{5}{3}\right)\sqrt{45}\right)\\
&=&\left(-20+\dfrac{165}{2}-\dfrac{43}{9}+\left(-35\right)\sqrt{5}+\dfrac{165}{2}+\left(-\dfrac{115}{3}\right)\sqrt{5}+\left(\left(-\dfrac{60}{7}\right)\sqrt{5}\right)-\left(\left(48\right)\sqrt{5}\right)-\left(\left(\dfrac{39}{2}\right)\sqrt{5}\right)-\left(\left(-\dfrac{128}{9}\right)\sqrt{5}\right)+\left(-\dfrac{395}{7}\right)\sqrt{5}+\left(\dfrac{70}{3}\right)\sqrt{5}\right)+\left(\left(-18\right)\sqrt{5}+\left(\left(\dfrac{325}{2}\right)\sqrt{5}\right)-\left(\left(2\right)\sqrt{5}\right)-\dfrac{405}{4}-\left(\left(\dfrac{44}{5}\right)\sqrt{5}\right)+\left(5\right)\sqrt{5}\right)\\
&=&-20+\dfrac{165}{2}-\dfrac{43}{9}+\left(-35\right)\sqrt{5}+\dfrac{165}{2}+\left(-\dfrac{115}{3}\right)\sqrt{5}+\left(\left(-\dfrac{60}{7}\right)\sqrt{5}\right)-\left(\left(48\right)\sqrt{5}\right)-\left(\left(\dfrac{39}{2}\right)\sqrt{5}\right)-\left(\left(-\dfrac{128}{9}\right)\sqrt{5}\right)+\left(-\dfrac{395}{7}\right)\sqrt{5}+\left(\dfrac{70}{3}\right)\sqrt{5}+\left(-18\right)\sqrt{5}+\left(\left(\dfrac{325}{2}\right)\sqrt{5}\right)-\left(\left(2\right)\sqrt{5}\right)-\dfrac{405}{4}-\left(\left(\dfrac{44}{5}\right)\sqrt{5}\right)+\left(5\right)\sqrt{5}\\
&=&\dfrac{1403}{36}+\left(-\dfrac{1331}{45}\right)\sqrt{5}\\
\end{eqnarray*}
\begin{eqnarray*}
X-Y
&=&\left(\left(-4\right)\sqrt{25}+\left(\dfrac{33}{2}\right)\sqrt{25}-\dfrac{43}{9}+\left(-7\right)\sqrt{125}+\left(\dfrac{33}{2}\right)\sqrt{25}+\left(-\dfrac{23}{3}\right)\sqrt{125}+\left(\left(-\dfrac{12}{7}\right)\sqrt{125}\right)-\left(\left(\dfrac{48}{5}\right)\sqrt{125}\right)-\left(\left(\dfrac{13}{2}\right)\sqrt{45}\right)-\left(\left(-\dfrac{64}{9}\right)\sqrt{20}\right)+\left(-\dfrac{79}{7}\right)\sqrt{125}+\left(\dfrac{70}{9}\right)\sqrt{45}\right)-\left(\left(-6\right)\sqrt{45}+\left(\left(\dfrac{65}{2}\right)\sqrt{125}\right)-\left(\left(1\right)\sqrt{20}\right)-\left(\left(\dfrac{81}{4}\right)\sqrt{25}\right)-\left(\left(\dfrac{22}{5}\right)\sqrt{20}\right)+\left(\dfrac{5}{3}\right)\sqrt{45}\right)\\
&=&\left(-20+\dfrac{165}{2}-\dfrac{43}{9}+\left(-35\right)\sqrt{5}+\dfrac{165}{2}+\left(-\dfrac{115}{3}\right)\sqrt{5}+\left(\left(-\dfrac{60}{7}\right)\sqrt{5}\right)-\left(\left(48\right)\sqrt{5}\right)-\left(\left(\dfrac{39}{2}\right)\sqrt{5}\right)-\left(\left(-\dfrac{128}{9}\right)\sqrt{5}\right)+\left(-\dfrac{395}{7}\right)\sqrt{5}+\left(\dfrac{70}{3}\right)\sqrt{5}\right)-\left(\left(-18\right)\sqrt{5}+\left(\left(\dfrac{325}{2}\right)\sqrt{5}\right)-\left(\left(2\right)\sqrt{5}\right)-\dfrac{405}{4}-\left(\left(\dfrac{44}{5}\right)\sqrt{5}\right)+\left(5\right)\sqrt{5}\right)\\
&=&\left(\dfrac{1262}{9}+\left(-\dfrac{3029}{18}\right)\sqrt{5}\right)-\left(\left(\dfrac{1387}{10}\right)\sqrt{5}-\dfrac{405}{4}\right)\\
&=&\dfrac{1262}{9}+\left(-\dfrac{3029}{18}\right)\sqrt{5}+\left(-\dfrac{1387}{10}\right)\sqrt{5}+\dfrac{405}{4}\\
&=&\dfrac{8693}{36}+\left(-\dfrac{13814}{45}\right)\sqrt{5}\\
\end{eqnarray*}
\begin{eqnarray*}
X\times Y
&=&\left(\left(-4\right)\sqrt{25}+\left(\dfrac{33}{2}\right)\sqrt{25}-\dfrac{43}{9}+\left(-7\right)\sqrt{125}+\left(\dfrac{33}{2}\right)\sqrt{25}+\left(-\dfrac{23}{3}\right)\sqrt{125}+\left(\left(-\dfrac{12}{7}\right)\sqrt{125}\right)-\left(\left(\dfrac{48}{5}\right)\sqrt{125}\right)-\left(\left(\dfrac{13}{2}\right)\sqrt{45}\right)-\left(\left(-\dfrac{64}{9}\right)\sqrt{20}\right)+\left(-\dfrac{79}{7}\right)\sqrt{125}+\left(\dfrac{70}{9}\right)\sqrt{45}\right)\times\left(\left(-6\right)\sqrt{45}+\left(\left(\dfrac{65}{2}\right)\sqrt{125}\right)-\left(\left(1\right)\sqrt{20}\right)-\left(\left(\dfrac{81}{4}\right)\sqrt{25}\right)-\left(\left(\dfrac{22}{5}\right)\sqrt{20}\right)+\left(\dfrac{5}{3}\right)\sqrt{45}\right)\\
&=&\left(-20+\dfrac{165}{2}-\dfrac{43}{9}+\left(-35\right)\sqrt{5}+\dfrac{165}{2}+\left(-\dfrac{115}{3}\right)\sqrt{5}+\left(\left(-\dfrac{60}{7}\right)\sqrt{5}\right)-\left(\left(48\right)\sqrt{5}\right)-\left(\left(\dfrac{39}{2}\right)\sqrt{5}\right)-\left(\left(-\dfrac{128}{9}\right)\sqrt{5}\right)+\left(-\dfrac{395}{7}\right)\sqrt{5}+\left(\dfrac{70}{3}\right)\sqrt{5}\right)\times\left(\left(-18\right)\sqrt{5}+\left(\left(\dfrac{325}{2}\right)\sqrt{5}\right)-\left(\left(2\right)\sqrt{5}\right)-\dfrac{405}{4}-\left(\left(\dfrac{44}{5}\right)\sqrt{5}\right)+\left(5\right)\sqrt{5}\right)\\
&=&\left(\dfrac{1262}{9}+\left(-\dfrac{3029}{18}\right)\sqrt{5}\right)\left(\left(\dfrac{1387}{10}\right)\sqrt{5}-\dfrac{405}{4}\right)\\
&=&\left(\dfrac{13135301}{360}\right)\sqrt{5}-\dfrac{28395}{2}+\left(-\dfrac{4201223}{180}\right)\sqrt{25}\\
&=&\left(\dfrac{13135301}{360}\right)\sqrt{5}-\dfrac{4712333}{36}\\
\end{eqnarray*}