L'exercice suivant est automatiquement et aléatoirement généré par ataraXy.
Si vous regénérez la page (F5) les valeurs seront changées.
La correction se trouve en bas de page.
Exercice
Soit \( X=\left(-\dfrac{7}{3}+\left(8\right)\sqrt{50}+\left(-\dfrac{9}{2}\right)\sqrt{18}+\left(-\dfrac{9}{2}\right)\sqrt{18}\right)-\left(\left(-\dfrac{55}{9}\right)\sqrt{18}\right)-\left(\left(\left(-\dfrac{9}{2}\right)\sqrt{18}\right)-\left(\left(\dfrac{50}{3}\right)\sqrt{8}\right)-\left(\left(-\dfrac{63}{5}\right)\sqrt{50}\right)-\left(\left(\dfrac{77}{5}\right)\sqrt{50}\right)-\left(\left(-\dfrac{63}{5}\right)\sqrt{50}\right)\right)-\left(\left(\dfrac{33}{5}\right)\sqrt{4}\right)-\left(\left(\left(\dfrac{5}{2}\right)\sqrt{8}\right)-\left(\left(-\dfrac{7}{8}\right)\sqrt{8}\right)-\left(\left(-\dfrac{81}{7}\right)\sqrt{8}\right)-\left(\left(\dfrac{13}{7}\right)\sqrt{18}\right)\right)\) et \( Y=\left(\dfrac{64}{5}\right)\sqrt{50}\) . Calculer et simplifier \( X+Y\) , \( X-Y\) et \( X\times Y\) .
Cliquer ici pour afficher la solution
Exercice
\begin{eqnarray*}
X+Y
&=&\left(\left(-\dfrac{7}{3}+\left(8\right)\sqrt{50}+\left(-\dfrac{9}{2}\right)\sqrt{18}+\left(-\dfrac{9}{2}\right)\sqrt{18}\right)-\left(\left(-\dfrac{55}{9}\right)\sqrt{18}\right)-\left(\left(\left(-\dfrac{9}{2}\right)\sqrt{18}\right)-\left(\left(\dfrac{50}{3}\right)\sqrt{8}\right)-\left(\left(-\dfrac{63}{5}\right)\sqrt{50}\right)-\left(\left(\dfrac{77}{5}\right)\sqrt{50}\right)-\left(\left(-\dfrac{63}{5}\right)\sqrt{50}\right)\right)-\left(\left(\dfrac{33}{5}\right)\sqrt{4}\right)-\left(\left(\left(\dfrac{5}{2}\right)\sqrt{8}\right)-\left(\left(-\dfrac{7}{8}\right)\sqrt{8}\right)-\left(\left(-\dfrac{81}{7}\right)\sqrt{8}\right)-\left(\left(\dfrac{13}{7}\right)\sqrt{18}\right)\right)\right)+\left(\left(\dfrac{64}{5}\right)\sqrt{50}\right)\\
&=&\left(\left(-\dfrac{7}{3}+\left(40\right)\sqrt{2}+\left(-\dfrac{27}{2}\right)\sqrt{2}+\left(-\dfrac{27}{2}\right)\sqrt{2}\right)-\left(\left(-\dfrac{55}{3}\right)\sqrt{2}\right)-\left(\left(\left(-\dfrac{27}{2}\right)\sqrt{2}\right)-\left(\left(\dfrac{100}{3}\right)\sqrt{2}\right)-\left(\left(-63\right)\sqrt{2}\right)-\left(\left(77\right)\sqrt{2}\right)-\left(\left(-63\right)\sqrt{2}\right)\right)-\dfrac{66}{5}-\left(\left(\left(5\right)\sqrt{2}\right)-\left(\left(-\dfrac{7}{4}\right)\sqrt{2}\right)-\left(\left(-\dfrac{162}{7}\right)\sqrt{2}\right)-\left(\left(\dfrac{39}{7}\right)\sqrt{2}\right)\right)\right)+\left(\left(64\right)\sqrt{2}\right)\\
&=&\left(-\dfrac{7}{3}+\left(40\right)\sqrt{2}+\left(-\dfrac{27}{2}\right)\sqrt{2}+\left(-\dfrac{27}{2}\right)\sqrt{2}\right)-\left(\left(-\dfrac{55}{3}\right)\sqrt{2}\right)-\left(\left(\left(-\dfrac{27}{2}\right)\sqrt{2}\right)-\left(\left(\dfrac{100}{3}\right)\sqrt{2}\right)-\left(\left(-63\right)\sqrt{2}\right)-\left(\left(77\right)\sqrt{2}\right)-\left(\left(-63\right)\sqrt{2}\right)\right)-\dfrac{66}{5}-\left(\left(\left(5\right)\sqrt{2}\right)-\left(\left(-\dfrac{7}{4}\right)\sqrt{2}\right)-\left(\left(-\dfrac{162}{7}\right)\sqrt{2}\right)-\left(\left(\dfrac{39}{7}\right)\sqrt{2}\right)\right)+\left(64\right)\sqrt{2}\\
&=&-\dfrac{233}{15}+\left(\dfrac{5783}{84}\right)\sqrt{2}\\
\end{eqnarray*}
\begin{eqnarray*}
X-Y
&=&\left(\left(-\dfrac{7}{3}+\left(8\right)\sqrt{50}+\left(-\dfrac{9}{2}\right)\sqrt{18}+\left(-\dfrac{9}{2}\right)\sqrt{18}\right)-\left(\left(-\dfrac{55}{9}\right)\sqrt{18}\right)-\left(\left(\left(-\dfrac{9}{2}\right)\sqrt{18}\right)-\left(\left(\dfrac{50}{3}\right)\sqrt{8}\right)-\left(\left(-\dfrac{63}{5}\right)\sqrt{50}\right)-\left(\left(\dfrac{77}{5}\right)\sqrt{50}\right)-\left(\left(-\dfrac{63}{5}\right)\sqrt{50}\right)\right)-\left(\left(\dfrac{33}{5}\right)\sqrt{4}\right)-\left(\left(\left(\dfrac{5}{2}\right)\sqrt{8}\right)-\left(\left(-\dfrac{7}{8}\right)\sqrt{8}\right)-\left(\left(-\dfrac{81}{7}\right)\sqrt{8}\right)-\left(\left(\dfrac{13}{7}\right)\sqrt{18}\right)\right)\right)-\left(\left(\dfrac{64}{5}\right)\sqrt{50}\right)\\
&=&\left(\left(-\dfrac{7}{3}+\left(40\right)\sqrt{2}+\left(-\dfrac{27}{2}\right)\sqrt{2}+\left(-\dfrac{27}{2}\right)\sqrt{2}\right)-\left(\left(-\dfrac{55}{3}\right)\sqrt{2}\right)-\left(\left(\left(-\dfrac{27}{2}\right)\sqrt{2}\right)-\left(\left(\dfrac{100}{3}\right)\sqrt{2}\right)-\left(\left(-63\right)\sqrt{2}\right)-\left(\left(77\right)\sqrt{2}\right)-\left(\left(-63\right)\sqrt{2}\right)\right)-\dfrac{66}{5}-\left(\left(\left(5\right)\sqrt{2}\right)-\left(\left(-\dfrac{7}{4}\right)\sqrt{2}\right)-\left(\left(-\dfrac{162}{7}\right)\sqrt{2}\right)-\left(\left(\dfrac{39}{7}\right)\sqrt{2}\right)\right)\right)-\left(\left(64\right)\sqrt{2}\right)\\
&=&\left(-\dfrac{233}{15}+\left(\dfrac{407}{84}\right)\sqrt{2}\right)-\left(\left(64\right)\sqrt{2}\right)\\
&=&-\dfrac{233}{15}+\left(\dfrac{407}{84}\right)\sqrt{2}+\left(-64\right)\sqrt{2}\\
&=&-\dfrac{233}{15}+\left(-\dfrac{4969}{84}\right)\sqrt{2}\\
\end{eqnarray*}
\begin{eqnarray*}
X\times Y
&=&\left(\left(-\dfrac{7}{3}+\left(8\right)\sqrt{50}+\left(-\dfrac{9}{2}\right)\sqrt{18}+\left(-\dfrac{9}{2}\right)\sqrt{18}\right)-\left(\left(-\dfrac{55}{9}\right)\sqrt{18}\right)-\left(\left(\left(-\dfrac{9}{2}\right)\sqrt{18}\right)-\left(\left(\dfrac{50}{3}\right)\sqrt{8}\right)-\left(\left(-\dfrac{63}{5}\right)\sqrt{50}\right)-\left(\left(\dfrac{77}{5}\right)\sqrt{50}\right)-\left(\left(-\dfrac{63}{5}\right)\sqrt{50}\right)\right)-\left(\left(\dfrac{33}{5}\right)\sqrt{4}\right)-\left(\left(\left(\dfrac{5}{2}\right)\sqrt{8}\right)-\left(\left(-\dfrac{7}{8}\right)\sqrt{8}\right)-\left(\left(-\dfrac{81}{7}\right)\sqrt{8}\right)-\left(\left(\dfrac{13}{7}\right)\sqrt{18}\right)\right)\right)\times\left(\left(\dfrac{64}{5}\right)\sqrt{50}\right)\\
&=&\left(\left(-\dfrac{7}{3}+\left(40\right)\sqrt{2}+\left(-\dfrac{27}{2}\right)\sqrt{2}+\left(-\dfrac{27}{2}\right)\sqrt{2}\right)-\left(\left(-\dfrac{55}{3}\right)\sqrt{2}\right)-\left(\left(\left(-\dfrac{27}{2}\right)\sqrt{2}\right)-\left(\left(\dfrac{100}{3}\right)\sqrt{2}\right)-\left(\left(-63\right)\sqrt{2}\right)-\left(\left(77\right)\sqrt{2}\right)-\left(\left(-63\right)\sqrt{2}\right)\right)-\dfrac{66}{5}-\left(\left(\left(5\right)\sqrt{2}\right)-\left(\left(-\dfrac{7}{4}\right)\sqrt{2}\right)-\left(\left(-\dfrac{162}{7}\right)\sqrt{2}\right)-\left(\left(\dfrac{39}{7}\right)\sqrt{2}\right)\right)\right)\times\left(\left(64\right)\sqrt{2}\right)\\
&=&\left(-\dfrac{233}{15}+\left(\dfrac{407}{84}\right)\sqrt{2}\right)\left(\left(64\right)\sqrt{2}\right)\\
&=&\left(-\dfrac{14912}{15}\right)\sqrt{2}+\left(\dfrac{6512}{21}\right)\sqrt{4}\\
&=&\left(-\dfrac{14912}{15}\right)\sqrt{2}+\dfrac{13024}{21}\\
\end{eqnarray*}