L'exercice suivant est automatiquement et aléatoirement généré par ataraXy.
Si vous regénérez la page (F5) les valeurs seront changées.
La correction se trouve en bas de page.
Exercice
Soit \( X=\left(\left(-\dfrac{14}{5}\right)\sqrt{28}\right)-\left(\left(2\right)\sqrt{175}+\left(\dfrac{53}{2}\right)\sqrt{63}+\left(\dfrac{51}{4}\right)\sqrt{63}+\left(\dfrac{40}{9}\right)\sqrt{28}\right)\) et \( Y=\left(\left(\dfrac{14}{3}\right)\sqrt{49}+\left(\dfrac{7}{2}\right)\sqrt{63}+\left(1\right)\sqrt{175}+\left(\dfrac{44}{3}\right)\sqrt{49}\right)-\left(\left(\left(\dfrac{9}{4}\right)\sqrt{28}\right)-\left(\left(-\dfrac{53}{4}\right)\sqrt{49}\right)\right)-\left(\left(-7\right)\sqrt{175}+\dfrac{3}{2}+\left(\dfrac{7}{2}\right)\sqrt{63}+\left(-\dfrac{47}{2}\right)\sqrt{63}\right)-\left(\left(\left(-\dfrac{23}{4}\right)\sqrt{28}\right)-\left(\left(-\dfrac{10}{7}\right)\sqrt{175}\right)\right)\) . Calculer et simplifier \( X+Y\) , \( X-Y\) et \( X\times Y\) .
Cliquer ici pour afficher la solution
Exercice
\begin{eqnarray*}
X+Y
&=&\left(\left(\left(-\dfrac{14}{5}\right)\sqrt{28}\right)-\left(\left(2\right)\sqrt{175}+\left(\dfrac{53}{2}\right)\sqrt{63}+\left(\dfrac{51}{4}\right)\sqrt{63}+\left(\dfrac{40}{9}\right)\sqrt{28}\right)\right)+\left(\left(\left(\dfrac{14}{3}\right)\sqrt{49}+\left(\dfrac{7}{2}\right)\sqrt{63}+\left(1\right)\sqrt{175}+\left(\dfrac{44}{3}\right)\sqrt{49}\right)-\left(\left(\left(\dfrac{9}{4}\right)\sqrt{28}\right)-\left(\left(-\dfrac{53}{4}\right)\sqrt{49}\right)\right)-\left(\left(-7\right)\sqrt{175}+\dfrac{3}{2}+\left(\dfrac{7}{2}\right)\sqrt{63}+\left(-\dfrac{47}{2}\right)\sqrt{63}\right)-\left(\left(\left(-\dfrac{23}{4}\right)\sqrt{28}\right)-\left(\left(-\dfrac{10}{7}\right)\sqrt{175}\right)\right)\right)\\
&=&\left(\left(\left(-\dfrac{28}{5}\right)\sqrt{7}\right)-\left(\left(10\right)\sqrt{7}+\left(\dfrac{159}{2}\right)\sqrt{7}+\left(\dfrac{153}{4}\right)\sqrt{7}+\left(\dfrac{80}{9}\right)\sqrt{7}\right)\right)+\left(\left(\dfrac{98}{3}+\left(\dfrac{21}{2}\right)\sqrt{7}+\left(5\right)\sqrt{7}+\dfrac{308}{3}\right)-\left(\left(\left(\dfrac{9}{2}\right)\sqrt{7}\right)+\dfrac{371}{4}\right)-\left(\left(-35\right)\sqrt{7}+\dfrac{3}{2}+\left(\dfrac{21}{2}\right)\sqrt{7}+\left(-\dfrac{141}{2}\right)\sqrt{7}\right)-\left(\left(\left(-\dfrac{23}{2}\right)\sqrt{7}\right)-\left(\left(-\dfrac{50}{7}\right)\sqrt{7}\right)\right)\right)\\
&=&\left(\left(-\dfrac{28}{5}\right)\sqrt{7}\right)-\left(\left(10\right)\sqrt{7}+\left(\dfrac{159}{2}\right)\sqrt{7}+\left(\dfrac{153}{4}\right)\sqrt{7}+\left(\dfrac{80}{9}\right)\sqrt{7}\right)+\left(\dfrac{98}{3}+\left(\dfrac{21}{2}\right)\sqrt{7}+\left(5\right)\sqrt{7}+\dfrac{308}{3}\right)-\left(\left(\left(\dfrac{9}{2}\right)\sqrt{7}\right)+\dfrac{371}{4}\right)-\left(\left(-35\right)\sqrt{7}+\dfrac{3}{2}+\left(\dfrac{21}{2}\right)\sqrt{7}+\left(-\dfrac{141}{2}\right)\sqrt{7}\right)-\left(\left(\left(-\dfrac{23}{2}\right)\sqrt{7}\right)-\left(\left(-\dfrac{50}{7}\right)\sqrt{7}\right)\right)\\
&=&\left(-\dfrac{40171}{1260}\right)\sqrt{7}+\dfrac{493}{12}\\
\end{eqnarray*}
\begin{eqnarray*}
X-Y
&=&\left(\left(\left(-\dfrac{14}{5}\right)\sqrt{28}\right)-\left(\left(2\right)\sqrt{175}+\left(\dfrac{53}{2}\right)\sqrt{63}+\left(\dfrac{51}{4}\right)\sqrt{63}+\left(\dfrac{40}{9}\right)\sqrt{28}\right)\right)-\left(\left(\left(\dfrac{14}{3}\right)\sqrt{49}+\left(\dfrac{7}{2}\right)\sqrt{63}+\left(1\right)\sqrt{175}+\left(\dfrac{44}{3}\right)\sqrt{49}\right)-\left(\left(\left(\dfrac{9}{4}\right)\sqrt{28}\right)-\left(\left(-\dfrac{53}{4}\right)\sqrt{49}\right)\right)-\left(\left(-7\right)\sqrt{175}+\dfrac{3}{2}+\left(\dfrac{7}{2}\right)\sqrt{63}+\left(-\dfrac{47}{2}\right)\sqrt{63}\right)-\left(\left(\left(-\dfrac{23}{4}\right)\sqrt{28}\right)-\left(\left(-\dfrac{10}{7}\right)\sqrt{175}\right)\right)\right)\\
&=&\left(\left(\left(-\dfrac{28}{5}\right)\sqrt{7}\right)-\left(\left(10\right)\sqrt{7}+\left(\dfrac{159}{2}\right)\sqrt{7}+\left(\dfrac{153}{4}\right)\sqrt{7}+\left(\dfrac{80}{9}\right)\sqrt{7}\right)\right)-\left(\left(\dfrac{98}{3}+\left(\dfrac{21}{2}\right)\sqrt{7}+\left(5\right)\sqrt{7}+\dfrac{308}{3}\right)-\left(\left(\left(\dfrac{9}{2}\right)\sqrt{7}\right)+\dfrac{371}{4}\right)-\left(\left(-35\right)\sqrt{7}+\dfrac{3}{2}+\left(\dfrac{21}{2}\right)\sqrt{7}+\left(-\dfrac{141}{2}\right)\sqrt{7}\right)-\left(\left(\left(-\dfrac{23}{2}\right)\sqrt{7}\right)-\left(\left(-\dfrac{50}{7}\right)\sqrt{7}\right)\right)\right)\\
&=&\left(\left(-\dfrac{25603}{180}\right)\sqrt{7}\right)-\left(\dfrac{493}{12}+\left(\dfrac{1545}{14}\right)\sqrt{7}\right)\\
&=&\left(-\dfrac{25603}{180}\right)\sqrt{7}+-\dfrac{493}{12}+\left(-\dfrac{1545}{14}\right)\sqrt{7}\\
&=&\left(-\dfrac{318271}{1260}\right)\sqrt{7}-\dfrac{493}{12}\\
\end{eqnarray*}
\begin{eqnarray*}
X\times Y
&=&\left(\left(\left(-\dfrac{14}{5}\right)\sqrt{28}\right)-\left(\left(2\right)\sqrt{175}+\left(\dfrac{53}{2}\right)\sqrt{63}+\left(\dfrac{51}{4}\right)\sqrt{63}+\left(\dfrac{40}{9}\right)\sqrt{28}\right)\right)\times\left(\left(\left(\dfrac{14}{3}\right)\sqrt{49}+\left(\dfrac{7}{2}\right)\sqrt{63}+\left(1\right)\sqrt{175}+\left(\dfrac{44}{3}\right)\sqrt{49}\right)-\left(\left(\left(\dfrac{9}{4}\right)\sqrt{28}\right)-\left(\left(-\dfrac{53}{4}\right)\sqrt{49}\right)\right)-\left(\left(-7\right)\sqrt{175}+\dfrac{3}{2}+\left(\dfrac{7}{2}\right)\sqrt{63}+\left(-\dfrac{47}{2}\right)\sqrt{63}\right)-\left(\left(\left(-\dfrac{23}{4}\right)\sqrt{28}\right)-\left(\left(-\dfrac{10}{7}\right)\sqrt{175}\right)\right)\right)\\
&=&\left(\left(\left(-\dfrac{28}{5}\right)\sqrt{7}\right)-\left(\left(10\right)\sqrt{7}+\left(\dfrac{159}{2}\right)\sqrt{7}+\left(\dfrac{153}{4}\right)\sqrt{7}+\left(\dfrac{80}{9}\right)\sqrt{7}\right)\right)\times\left(\left(\dfrac{98}{3}+\left(\dfrac{21}{2}\right)\sqrt{7}+\left(5\right)\sqrt{7}+\dfrac{308}{3}\right)-\left(\left(\left(\dfrac{9}{2}\right)\sqrt{7}\right)+\dfrac{371}{4}\right)-\left(\left(-35\right)\sqrt{7}+\dfrac{3}{2}+\left(\dfrac{21}{2}\right)\sqrt{7}+\left(-\dfrac{141}{2}\right)\sqrt{7}\right)-\left(\left(\left(-\dfrac{23}{2}\right)\sqrt{7}\right)-\left(\left(-\dfrac{50}{7}\right)\sqrt{7}\right)\right)\right)\\
&=&\left(\left(-\dfrac{25603}{180}\right)\sqrt{7}\right)\left(\dfrac{493}{12}+\left(\dfrac{1545}{14}\right)\sqrt{7}\right)\\
&=&\left(-\dfrac{12622279}{2160}\right)\sqrt{7}+\left(-\dfrac{2637109}{168}\right)\sqrt{49}\\
&=&\left(-\dfrac{12622279}{2160}\right)\sqrt{7}-\dfrac{2637109}{24}\\
\end{eqnarray*}