L'exercice suivant est automatiquement et aléatoirement généré par ataraXy.
Si vous regénérez la page (F5) les valeurs seront changées.
La correction se trouve en bas de page.
Exercice
Soit \( X=\left(\left(-\dfrac{58}{5}\right)\sqrt{20}\right)-\left(\left(\left(-3\right)\sqrt{125}\right)-\dfrac{12}{7}-\left(\left(-\dfrac{50}{3}\right)\sqrt{45}\right)-\left(\left(-\dfrac{70}{9}\right)\sqrt{45}\right)-\left(\left(-4\right)\sqrt{125}\right)\right)-\left(\left(\dfrac{73}{3}\right)\sqrt{45}\right)-\left(0-\left(\left(-\dfrac{50}{3}\right)\sqrt{45}\right)\right)-\left(\left(5\right)\sqrt{20}\right)\) et \( Y=\left(-\dfrac{37}{9}\right)\sqrt{25}+\left(\dfrac{81}{5}\right)\sqrt{45}+\left(\left(-\dfrac{25}{9}\right)\sqrt{25}\right)-\left(\left(-\dfrac{34}{9}\right)\sqrt{45}\right)+4+\dfrac{5}{4}-\left(\left(-\dfrac{9}{4}\right)\sqrt{125}\right)+\left(-\dfrac{38}{3}\right)\sqrt{125}+\dfrac{61}{7}+\left(-\dfrac{9}{4}\right)\sqrt{125}+\left(\dfrac{15}{2}\right)\sqrt{45}+\dfrac{25}{6}+\left(\dfrac{11}{2}\right)\sqrt{20}\) . Calculer et simplifier \( X+Y\) , \( X-Y\) et \( X\times Y\) .
Cliquer ici pour afficher la solution
Exercice
\begin{eqnarray*}
X+Y
&=&\left(\left(\left(-\dfrac{58}{5}\right)\sqrt{20}\right)-\left(\left(\left(-3\right)\sqrt{125}\right)-\dfrac{12}{7}-\left(\left(-\dfrac{50}{3}\right)\sqrt{45}\right)-\left(\left(-\dfrac{70}{9}\right)\sqrt{45}\right)-\left(\left(-4\right)\sqrt{125}\right)\right)-\left(\left(\dfrac{73}{3}\right)\sqrt{45}\right)-\left(0-\left(\left(-\dfrac{50}{3}\right)\sqrt{45}\right)\right)-\left(\left(5\right)\sqrt{20}\right)\right)+\left(\left(-\dfrac{37}{9}\right)\sqrt{25}+\left(\dfrac{81}{5}\right)\sqrt{45}+\left(\left(-\dfrac{25}{9}\right)\sqrt{25}\right)-\left(\left(-\dfrac{34}{9}\right)\sqrt{45}\right)+4+\dfrac{5}{4}-\left(\left(-\dfrac{9}{4}\right)\sqrt{125}\right)+\left(-\dfrac{38}{3}\right)\sqrt{125}+\dfrac{61}{7}+\left(-\dfrac{9}{4}\right)\sqrt{125}+\left(\dfrac{15}{2}\right)\sqrt{45}+\dfrac{25}{6}+\left(\dfrac{11}{2}\right)\sqrt{20}\right)\\
&=&\left(\left(\left(-\dfrac{116}{5}\right)\sqrt{5}\right)-\left(\left(\left(-15\right)\sqrt{5}\right)-\dfrac{12}{7}-\left(\left(-50\right)\sqrt{5}\right)-\left(\left(-\dfrac{70}{3}\right)\sqrt{5}\right)-\left(\left(-20\right)\sqrt{5}\right)\right)-\left(\left(73\right)\sqrt{5}\right)-\left(0-\left(\left(-50\right)\sqrt{5}\right)\right)-\left(\left(10\right)\sqrt{5}\right)\right)+\left(-\dfrac{185}{9}+\left(\dfrac{243}{5}\right)\sqrt{5}-\dfrac{125}{9}-\left(\left(-\dfrac{34}{3}\right)\sqrt{5}\right)+4+\dfrac{5}{4}-\left(\left(-\dfrac{45}{4}\right)\sqrt{5}\right)+\left(-\dfrac{190}{3}\right)\sqrt{5}+\dfrac{61}{7}+\left(-\dfrac{45}{4}\right)\sqrt{5}+\left(\dfrac{45}{2}\right)\sqrt{5}+\dfrac{25}{6}+\left(11\right)\sqrt{5}\right)\\
&=&\left(\left(-\dfrac{116}{5}\right)\sqrt{5}\right)-\left(\left(\left(-15\right)\sqrt{5}\right)-\dfrac{12}{7}-\left(\left(-50\right)\sqrt{5}\right)-\left(\left(-\dfrac{70}{3}\right)\sqrt{5}\right)-\left(\left(-20\right)\sqrt{5}\right)\right)-\left(\left(73\right)\sqrt{5}\right)-\left(0-\left(\left(-50\right)\sqrt{5}\right)\right)-\left(\left(10\right)\sqrt{5}\right)-\dfrac{185}{9}+\left(\dfrac{243}{5}\right)\sqrt{5}-\dfrac{125}{9}-\left(\left(-\dfrac{34}{3}\right)\sqrt{5}\right)+4+\dfrac{5}{4}-\left(\left(-\dfrac{45}{4}\right)\sqrt{5}\right)+\left(-\dfrac{190}{3}\right)\sqrt{5}+\dfrac{61}{7}+\left(-\dfrac{45}{4}\right)\sqrt{5}+\left(\dfrac{45}{2}\right)\sqrt{5}+\dfrac{25}{6}+\left(11\right)\sqrt{5}\\
&=&\left(-\dfrac{6133}{30}\right)\sqrt{5}-\dfrac{3679}{252}\\
\end{eqnarray*}
\begin{eqnarray*}
X-Y
&=&\left(\left(\left(-\dfrac{58}{5}\right)\sqrt{20}\right)-\left(\left(\left(-3\right)\sqrt{125}\right)-\dfrac{12}{7}-\left(\left(-\dfrac{50}{3}\right)\sqrt{45}\right)-\left(\left(-\dfrac{70}{9}\right)\sqrt{45}\right)-\left(\left(-4\right)\sqrt{125}\right)\right)-\left(\left(\dfrac{73}{3}\right)\sqrt{45}\right)-\left(0-\left(\left(-\dfrac{50}{3}\right)\sqrt{45}\right)\right)-\left(\left(5\right)\sqrt{20}\right)\right)-\left(\left(-\dfrac{37}{9}\right)\sqrt{25}+\left(\dfrac{81}{5}\right)\sqrt{45}+\left(\left(-\dfrac{25}{9}\right)\sqrt{25}\right)-\left(\left(-\dfrac{34}{9}\right)\sqrt{45}\right)+4+\dfrac{5}{4}-\left(\left(-\dfrac{9}{4}\right)\sqrt{125}\right)+\left(-\dfrac{38}{3}\right)\sqrt{125}+\dfrac{61}{7}+\left(-\dfrac{9}{4}\right)\sqrt{125}+\left(\dfrac{15}{2}\right)\sqrt{45}+\dfrac{25}{6}+\left(\dfrac{11}{2}\right)\sqrt{20}\right)\\
&=&\left(\left(\left(-\dfrac{116}{5}\right)\sqrt{5}\right)-\left(\left(\left(-15\right)\sqrt{5}\right)-\dfrac{12}{7}-\left(\left(-50\right)\sqrt{5}\right)-\left(\left(-\dfrac{70}{3}\right)\sqrt{5}\right)-\left(\left(-20\right)\sqrt{5}\right)\right)-\left(\left(73\right)\sqrt{5}\right)-\left(0-\left(\left(-50\right)\sqrt{5}\right)\right)-\left(\left(10\right)\sqrt{5}\right)\right)-\left(-\dfrac{185}{9}+\left(\dfrac{243}{5}\right)\sqrt{5}-\dfrac{125}{9}-\left(\left(-\dfrac{34}{3}\right)\sqrt{5}\right)+4+\dfrac{5}{4}-\left(\left(-\dfrac{45}{4}\right)\sqrt{5}\right)+\left(-\dfrac{190}{3}\right)\sqrt{5}+\dfrac{61}{7}+\left(-\dfrac{45}{4}\right)\sqrt{5}+\left(\dfrac{45}{2}\right)\sqrt{5}+\dfrac{25}{6}+\left(11\right)\sqrt{5}\right)\\
&=&\left(\left(-\dfrac{3518}{15}\right)\sqrt{5}+\dfrac{12}{7}\right)-\left(-\dfrac{4111}{252}+\left(\dfrac{301}{10}\right)\sqrt{5}\right)\\
&=&\left(-\dfrac{3518}{15}\right)\sqrt{5}+\dfrac{12}{7}+\dfrac{4111}{252}+\left(-\dfrac{301}{10}\right)\sqrt{5}\\
&=&\left(-\dfrac{7939}{30}\right)\sqrt{5}+\dfrac{649}{36}\\
\end{eqnarray*}
\begin{eqnarray*}
X\times Y
&=&\left(\left(\left(-\dfrac{58}{5}\right)\sqrt{20}\right)-\left(\left(\left(-3\right)\sqrt{125}\right)-\dfrac{12}{7}-\left(\left(-\dfrac{50}{3}\right)\sqrt{45}\right)-\left(\left(-\dfrac{70}{9}\right)\sqrt{45}\right)-\left(\left(-4\right)\sqrt{125}\right)\right)-\left(\left(\dfrac{73}{3}\right)\sqrt{45}\right)-\left(0-\left(\left(-\dfrac{50}{3}\right)\sqrt{45}\right)\right)-\left(\left(5\right)\sqrt{20}\right)\right)\times\left(\left(-\dfrac{37}{9}\right)\sqrt{25}+\left(\dfrac{81}{5}\right)\sqrt{45}+\left(\left(-\dfrac{25}{9}\right)\sqrt{25}\right)-\left(\left(-\dfrac{34}{9}\right)\sqrt{45}\right)+4+\dfrac{5}{4}-\left(\left(-\dfrac{9}{4}\right)\sqrt{125}\right)+\left(-\dfrac{38}{3}\right)\sqrt{125}+\dfrac{61}{7}+\left(-\dfrac{9}{4}\right)\sqrt{125}+\left(\dfrac{15}{2}\right)\sqrt{45}+\dfrac{25}{6}+\left(\dfrac{11}{2}\right)\sqrt{20}\right)\\
&=&\left(\left(\left(-\dfrac{116}{5}\right)\sqrt{5}\right)-\left(\left(\left(-15\right)\sqrt{5}\right)-\dfrac{12}{7}-\left(\left(-50\right)\sqrt{5}\right)-\left(\left(-\dfrac{70}{3}\right)\sqrt{5}\right)-\left(\left(-20\right)\sqrt{5}\right)\right)-\left(\left(73\right)\sqrt{5}\right)-\left(0-\left(\left(-50\right)\sqrt{5}\right)\right)-\left(\left(10\right)\sqrt{5}\right)\right)\times\left(-\dfrac{185}{9}+\left(\dfrac{243}{5}\right)\sqrt{5}-\dfrac{125}{9}-\left(\left(-\dfrac{34}{3}\right)\sqrt{5}\right)+4+\dfrac{5}{4}-\left(\left(-\dfrac{45}{4}\right)\sqrt{5}\right)+\left(-\dfrac{190}{3}\right)\sqrt{5}+\dfrac{61}{7}+\left(-\dfrac{45}{4}\right)\sqrt{5}+\left(\dfrac{45}{2}\right)\sqrt{5}+\dfrac{25}{6}+\left(11\right)\sqrt{5}\right)\\
&=&\left(\left(-\dfrac{3518}{15}\right)\sqrt{5}+\dfrac{12}{7}\right)\left(-\dfrac{4111}{252}+\left(\dfrac{301}{10}\right)\sqrt{5}\right)\\
&=&\left(\dfrac{7328773}{1890}\right)\sqrt{5}+\left(-\dfrac{529459}{75}\right)\sqrt{25}-\dfrac{4111}{147}\\
&=&\left(\dfrac{7328773}{1890}\right)\sqrt{5}-\dfrac{8654682}{245}\\
\end{eqnarray*}