L'exercice suivant est automatiquement et aléatoirement généré par ataraXy.
Si vous regénérez la page (F5) les valeurs seront changées.
La correction se trouve en bas de page.
Exercice
Soit \( X=\left(\left(\left(\dfrac{26}{7}\right)\sqrt{50}\right)+1-\left(\left(-\dfrac{5}{2}\right)\sqrt{8}\right)\right)-\left(\left(-3\right)\sqrt{50}+\left(\dfrac{51}{4}\right)\sqrt{8}+\left(-\dfrac{47}{7}\right)\sqrt{4}\right)-\left(\left(\left(-\dfrac{47}{9}\right)\sqrt{4}\right)-\left(\left(\dfrac{51}{4}\right)\sqrt{8}\right)-\dfrac{32}{7}\right)-\left(\left(-5\right)\sqrt{8}+\left(-\dfrac{70}{3}\right)\sqrt{18}+\left(-\dfrac{80}{3}\right)\sqrt{8}\right)\) et \( Y=\left(\left(\dfrac{59}{7}\right)\sqrt{4}+\left(1\right)\sqrt{50}+\left(\dfrac{45}{2}\right)\sqrt{50}\right)-\left(\left(\dfrac{25}{4}\right)\sqrt{50}\right)-\left(\left(\dfrac{24}{5}\right)\sqrt{18}+\left(\dfrac{45}{2}\right)\sqrt{50}+\dfrac{19}{3}\right)\) . Calculer et simplifier \( X+Y\) , \( X-Y\) et \( X\times Y\) .
Cliquer ici pour afficher la solution
Exercice
\begin{eqnarray*}
X+Y
&=&\left(\left(\left(\left(\dfrac{26}{7}\right)\sqrt{50}\right)+1-\left(\left(-\dfrac{5}{2}\right)\sqrt{8}\right)\right)-\left(\left(-3\right)\sqrt{50}+\left(\dfrac{51}{4}\right)\sqrt{8}+\left(-\dfrac{47}{7}\right)\sqrt{4}\right)-\left(\left(\left(-\dfrac{47}{9}\right)\sqrt{4}\right)-\left(\left(\dfrac{51}{4}\right)\sqrt{8}\right)-\dfrac{32}{7}\right)-\left(\left(-5\right)\sqrt{8}+\left(-\dfrac{70}{3}\right)\sqrt{18}+\left(-\dfrac{80}{3}\right)\sqrt{8}\right)\right)+\left(\left(\left(\dfrac{59}{7}\right)\sqrt{4}+\left(1\right)\sqrt{50}+\left(\dfrac{45}{2}\right)\sqrt{50}\right)-\left(\left(\dfrac{25}{4}\right)\sqrt{50}\right)-\left(\left(\dfrac{24}{5}\right)\sqrt{18}+\left(\dfrac{45}{2}\right)\sqrt{50}+\dfrac{19}{3}\right)\right)\\
&=&\left(\left(\left(\left(\dfrac{130}{7}\right)\sqrt{2}\right)+1-\left(\left(-5\right)\sqrt{2}\right)\right)-\left(\left(-15\right)\sqrt{2}+\left(\dfrac{51}{2}\right)\sqrt{2}-\dfrac{94}{7}\right)-\left(-\dfrac{94}{9}-\left(\left(\dfrac{51}{2}\right)\sqrt{2}\right)-\dfrac{32}{7}\right)-\left(\left(-10\right)\sqrt{2}+\left(-70\right)\sqrt{2}+\left(-\dfrac{160}{3}\right)\sqrt{2}\right)\right)+\left(\left(\dfrac{118}{7}+\left(5\right)\sqrt{2}+\left(\dfrac{225}{2}\right)\sqrt{2}\right)-\left(\left(\dfrac{125}{4}\right)\sqrt{2}\right)-\left(\left(\dfrac{72}{5}\right)\sqrt{2}+\left(\dfrac{225}{2}\right)\sqrt{2}+\dfrac{19}{3}\right)\right)\\
&=&\left(\left(\left(\dfrac{130}{7}\right)\sqrt{2}\right)+1-\left(\left(-5\right)\sqrt{2}\right)\right)-\left(\left(-15\right)\sqrt{2}+\left(\dfrac{51}{2}\right)\sqrt{2}-\dfrac{94}{7}\right)-\left(-\dfrac{94}{9}-\left(\left(\dfrac{51}{2}\right)\sqrt{2}\right)-\dfrac{32}{7}\right)-\left(\left(-10\right)\sqrt{2}+\left(-70\right)\sqrt{2}+\left(-\dfrac{160}{3}\right)\sqrt{2}\right)+\left(\dfrac{118}{7}+\left(5\right)\sqrt{2}+\left(\dfrac{225}{2}\right)\sqrt{2}\right)-\left(\left(\dfrac{125}{4}\right)\sqrt{2}\right)-\left(\left(\dfrac{72}{5}\right)\sqrt{2}+\left(\dfrac{225}{2}\right)\sqrt{2}+\dfrac{19}{3}\right)\\
&=&\left(\dfrac{55127}{420}\right)\sqrt{2}+\dfrac{2518}{63}\\
\end{eqnarray*}
\begin{eqnarray*}
X-Y
&=&\left(\left(\left(\left(\dfrac{26}{7}\right)\sqrt{50}\right)+1-\left(\left(-\dfrac{5}{2}\right)\sqrt{8}\right)\right)-\left(\left(-3\right)\sqrt{50}+\left(\dfrac{51}{4}\right)\sqrt{8}+\left(-\dfrac{47}{7}\right)\sqrt{4}\right)-\left(\left(\left(-\dfrac{47}{9}\right)\sqrt{4}\right)-\left(\left(\dfrac{51}{4}\right)\sqrt{8}\right)-\dfrac{32}{7}\right)-\left(\left(-5\right)\sqrt{8}+\left(-\dfrac{70}{3}\right)\sqrt{18}+\left(-\dfrac{80}{3}\right)\sqrt{8}\right)\right)-\left(\left(\left(\dfrac{59}{7}\right)\sqrt{4}+\left(1\right)\sqrt{50}+\left(\dfrac{45}{2}\right)\sqrt{50}\right)-\left(\left(\dfrac{25}{4}\right)\sqrt{50}\right)-\left(\left(\dfrac{24}{5}\right)\sqrt{18}+\left(\dfrac{45}{2}\right)\sqrt{50}+\dfrac{19}{3}\right)\right)\\
&=&\left(\left(\left(\left(\dfrac{130}{7}\right)\sqrt{2}\right)+1-\left(\left(-5\right)\sqrt{2}\right)\right)-\left(\left(-15\right)\sqrt{2}+\left(\dfrac{51}{2}\right)\sqrt{2}-\dfrac{94}{7}\right)-\left(-\dfrac{94}{9}-\left(\left(\dfrac{51}{2}\right)\sqrt{2}\right)-\dfrac{32}{7}\right)-\left(\left(-10\right)\sqrt{2}+\left(-70\right)\sqrt{2}+\left(-\dfrac{160}{3}\right)\sqrt{2}\right)\right)-\left(\left(\dfrac{118}{7}+\left(5\right)\sqrt{2}+\left(\dfrac{225}{2}\right)\sqrt{2}\right)-\left(\left(\dfrac{125}{4}\right)\sqrt{2}\right)-\left(\left(\dfrac{72}{5}\right)\sqrt{2}+\left(\dfrac{225}{2}\right)\sqrt{2}+\dfrac{19}{3}\right)\right)\\
&=&\left(\left(\dfrac{3610}{21}\right)\sqrt{2}+\dfrac{265}{9}\right)-\left(\dfrac{221}{21}+\left(-\dfrac{813}{20}\right)\sqrt{2}\right)\\
&=&\left(\dfrac{3610}{21}\right)\sqrt{2}+\dfrac{265}{9}+-\dfrac{221}{21}+\left(\dfrac{813}{20}\right)\sqrt{2}\\
&=&\left(\dfrac{89273}{420}\right)\sqrt{2}+\dfrac{1192}{63}\\
\end{eqnarray*}
\begin{eqnarray*}
X\times Y
&=&\left(\left(\left(\left(\dfrac{26}{7}\right)\sqrt{50}\right)+1-\left(\left(-\dfrac{5}{2}\right)\sqrt{8}\right)\right)-\left(\left(-3\right)\sqrt{50}+\left(\dfrac{51}{4}\right)\sqrt{8}+\left(-\dfrac{47}{7}\right)\sqrt{4}\right)-\left(\left(\left(-\dfrac{47}{9}\right)\sqrt{4}\right)-\left(\left(\dfrac{51}{4}\right)\sqrt{8}\right)-\dfrac{32}{7}\right)-\left(\left(-5\right)\sqrt{8}+\left(-\dfrac{70}{3}\right)\sqrt{18}+\left(-\dfrac{80}{3}\right)\sqrt{8}\right)\right)\times\left(\left(\left(\dfrac{59}{7}\right)\sqrt{4}+\left(1\right)\sqrt{50}+\left(\dfrac{45}{2}\right)\sqrt{50}\right)-\left(\left(\dfrac{25}{4}\right)\sqrt{50}\right)-\left(\left(\dfrac{24}{5}\right)\sqrt{18}+\left(\dfrac{45}{2}\right)\sqrt{50}+\dfrac{19}{3}\right)\right)\\
&=&\left(\left(\left(\left(\dfrac{130}{7}\right)\sqrt{2}\right)+1-\left(\left(-5\right)\sqrt{2}\right)\right)-\left(\left(-15\right)\sqrt{2}+\left(\dfrac{51}{2}\right)\sqrt{2}-\dfrac{94}{7}\right)-\left(-\dfrac{94}{9}-\left(\left(\dfrac{51}{2}\right)\sqrt{2}\right)-\dfrac{32}{7}\right)-\left(\left(-10\right)\sqrt{2}+\left(-70\right)\sqrt{2}+\left(-\dfrac{160}{3}\right)\sqrt{2}\right)\right)\times\left(\left(\dfrac{118}{7}+\left(5\right)\sqrt{2}+\left(\dfrac{225}{2}\right)\sqrt{2}\right)-\left(\left(\dfrac{125}{4}\right)\sqrt{2}\right)-\left(\left(\dfrac{72}{5}\right)\sqrt{2}+\left(\dfrac{225}{2}\right)\sqrt{2}+\dfrac{19}{3}\right)\right)\\
&=&\left(\left(\dfrac{3610}{21}\right)\sqrt{2}+\dfrac{265}{9}\right)\left(\dfrac{221}{21}+\left(-\dfrac{813}{20}\right)\sqrt{2}\right)\\
&=&\left(\dfrac{1079879}{1764}\right)\sqrt{2}+\left(-\dfrac{97831}{14}\right)\sqrt{4}+\dfrac{58565}{189}\\
&=&\left(\dfrac{1079879}{1764}\right)\sqrt{2}-\dfrac{2582872}{189}\\
\end{eqnarray*}