Exercice
Faisons apparaître une inéquation de signe :
\begin{eqnarray*}
\dfrac{-x-\dfrac{25}{4}}{-x+\dfrac{25}{4}}\geqslant \dfrac{-x+\dfrac{25}{4}}{-x-\dfrac{25}{4}} & \Longleftrightarrow & \dfrac{-x-\dfrac{25}{4}}{-x+\dfrac{25}{4}}-\dfrac{-x+\dfrac{25}{4}}{-x-\dfrac{25}{4}}\geqslant 0\\ & \Longleftrightarrow & \dfrac{\left(-x-\dfrac{25}{4}\right)^2}{\left(-x+\dfrac{25}{4}\right)\left(-x-\dfrac{25}{4}\right)}-\dfrac{\left(-x+\dfrac{25}{4}\right)^2}{\left(-x-\dfrac{25}{4}\right)\left(-x+\dfrac{25}{4}\right)}\geqslant 0\\ & \Longleftrightarrow & \dfrac{\left(-x-\dfrac{25}{4}\right)^2-\left(-x+\dfrac{25}{4}\right)^2}{\left(-x+\dfrac{25}{4}\right)\left(-x-\dfrac{25}{4}\right)}\geqslant 0\\ & \Longleftrightarrow & \dfrac{25x}{\left(-x+\dfrac{25}{4}\right)\left(-x-\dfrac{25}{4}\right)}\geqslant 0\end{eqnarray*}
Solutionnons chacun des facteurs.
Le facteur au numérateur s'annule trivialement en \( 0 \) .
Les deux facteurs aux dénominateurs s'annulent en \( -\dfrac{25}{4}\) et \( \dfrac{25}{4}\) (cela se retrouve par la résolution d'une équation au produit nul) et sont donc des valeurs interdites (puisqu'au dénominateur).
Dressons le tableau de signe :
La lecture du tableau donne :
\[
S=\left]-\dfrac{25}{4} ; 0 \right]\cup\left] \dfrac{25}{4} ; +\infty\right[
\]