\( %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Mes commandes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\multirows}[3]{\multirow{#1}{#2}{$#3$}}%pour rester en mode math \renewcommand{\arraystretch}{1.3}%pour augmenter la taille des case \newcommand{\point}[1]{\marginnote{\small\vspace*{-1em} #1}}%pour indiquer les points ou le temps \newcommand{\dpl}[1]{\displaystyle{#1}}%megamode \newcommand{\A}{\mathscr{A}} \newcommand{\LN}{\mathscr{N}} \newcommand{\LL}{\mathscr{L}} \newcommand{\K}{\mathbb{K}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\M}{\mathcal{M}} \newcommand{\D}{\mathbb{D}} \newcommand{\E}{\mathcal{E}} \renewcommand{\P}{\mathcal{P}} \newcommand{\G}{\mathcal{G}} \newcommand{\Kk}{\mathcal{K}} \newcommand{\Cc}{\mathcal{C}} \newcommand{\Zz}{\mathcal{Z}} \newcommand{\Ss}{\mathcal{S}} \newcommand{\B}{\mathbb{B}} \newcommand{\inde}{\bot\!\!\!\bot} \newcommand{\Proba}{\mathbb{P}} \newcommand{\Esp}[1]{\dpl{\mathbb{E}\left(#1\right)}} \newcommand{\Var}[1]{\dpl{\mathbb{V}\left(#1\right)}} \newcommand{\Cov}[1]{\dpl{Cov\left(#1\right)}} \newcommand{\base}{\mathcal{B}} \newcommand{\Som}{\textbf{Som}} \newcommand{\Chain}{\textbf{Chain}} \newcommand{\Ar}{\textbf{Ar}} \newcommand{\Arc}{\textbf{Arc}} \newcommand{\Min}{\text{Min}} \newcommand{\Max}{\text{Max}} \newcommand{\Ker}{\text{Ker}} \renewcommand{\Im}{\text{Im}} \newcommand{\Sup}{\text{Sup}} \newcommand{\Inf}{\text{Inf}} \renewcommand{\det}{\texttt{det}} \newcommand{\GL}{\text{GL}} \newcommand{\crossmark}{\text{\ding{55}}} \renewcommand{\checkmark}{\text{\ding{51}}} \newcommand{\Card}{\sharp} \newcommand{\Surligne}[2]{\text{\colorbox{#1}{ #2 }}} \newcommand{\SurligneMM}[2]{\text{\colorbox{#1}{ #2 }}} \newcommand{\norm}[1]{\left\lVert#1\right\rVert} \renewcommand{\lim}[1]{\underset{#1}{lim}\,} \newcommand{\nonor}[1]{\left|#1\right|} \newcommand{\Un}{1\!\!1} \newcommand{\sepon}{\setlength{\columnseprule}{0.5pt}} \newcommand{\sepoff}{\setlength{\columnseprule}{0pt}} \newcommand{\flux}{Flux} \newcommand{\Cpp}{\texttt{C++\ }} \newcommand{\Python}{\texttt{Python\ }} %\newcommand{\comb}[2]{\begin{pmatrix} #1\\ #2\end{pmatrix}} \newcommand{\comb}[2]{C_{#1}^{#2}} \newcommand{\arrang}[2]{A_{#1}^{#2}} \newcommand{\supp}[1]{Supp\left(#1\right)} \newcommand{\BB}{\mathcal{B}} \newcommand{\arc}[1]{\overset{\rotatebox{90}{)}}{#1}} \newcommand{\modpi}{\equiv_{2\pi}} \renewcommand{\Re}{Re} \renewcommand{\Im}{Im} \renewcommand{\bar}[1]{\overline{#1}} \newcommand{\mat}{\mathcal{M}} \newcommand{\und}[1]{{\mathbf{\color{red}\underline{#1}}}} \newcommand{\rdots}{\text{\reflectbox{$\ddots$}}} \newcommand{\Compa}{Compa} \newcommand{\dint}{\dpl{\int}} \newcommand{\intEFF}[2]{\left[\!\left[#1 ; #2\right]\!\right]} \newcommand{\intEFO}[2]{\left[\!\left[#1 ; #2\right[\!\right[} \newcommand{\intEOF}[2]{\left]\!\left]#1 ; #2\right]\!\right]} \newcommand{\intEOO}[2]{\left]\!\left]#1 ; #2\right[\!\right[} \newcommand{\ou}{\vee} \newcommand{\et}{\wedge} \newcommand{\non}{\neg} \newcommand{\implique}{\Rightarrow} \newcommand{\equivalent}{\Leftrightarrow} \newcommand{\Ab}{\overline{A}} \newcommand{\Bb}{\overline{B}} \newcommand{\Cb}{\overline{C}} \newcommand{\Cl}{\texttt{Cl}} \newcommand{\ab}{\overline{a}} \newcommand{\bb}{\overline{b}} \newcommand{\cb}{\overline{c}} \newcommand{\Rel}{\mathcal{R}} \newcommand{\superepsilon}{\varepsilon\!\!\varepsilon} \newcommand{\supere}{e\!\!e} \makeatletter \newenvironment{console}{\noindent\color{white}\begin{lrbox}{\@tempboxa}\begin{minipage}{\columnwidth} \ttfamily \bfseries\vspace*{0.5cm}} {\vspace*{0.5cm}\end{minipage}\end{lrbox}\colorbox{black}{\usebox{\@tempboxa}} } \makeatother \def\ie{\textit{i.e. }} \def\cf{\textit{c.f. }} \def\vide{ { $ {\text{ }} $ } } %Commande pour les vecteurs \newcommand{\grad}{\overrightarrow{Grad}} \newcommand{\Vv}{\overrightarrow{v}} \newcommand{\Vu}{\overrightarrow{u}} \newcommand{\Vw}{\overrightarrow{w}} \newcommand{\Vup}{\overrightarrow{u'}} \newcommand{\Zero}{\overrightarrow{0}} \newcommand{\Vx}{\overrightarrow{x}} \newcommand{\Vy}{\overrightarrow{y}} \newcommand{\Vz}{\overrightarrow{z}} \newcommand{\Vt}{\overrightarrow{t}} \newcommand{\Va}{\overrightarrow{a}} \newcommand{\Vb}{\overrightarrow{b}} \newcommand{\Vc}{\overrightarrow{c}} \newcommand{\Vd}{\overrightarrow{d}} \newcommand{\Ve}[1]{\overrightarrow{e_{#1}}} \newcommand{\Vf}[1]{\overrightarrow{f_{#1}}} \newcommand{\Vn}{\overrightarrow{0}} \newcommand{\Mat}{Mat} \newcommand{\Pass}{Pass} \newcommand{\mkF}{\mathfrak{F}} \renewcommand{\sp}{Sp} \newcommand{\Co}{Co} \newcommand{\vect}[1]{\texttt{Vect}\dpl{\left( #1\right)}} \newcommand{\prodscal}[2]{\dpl{\left\langle #1\left|\vphantom{#1 #2}\right. #2\right\rangle}} \newcommand{\trans}[1]{{\vphantom{#1}}^{t}{#1}} \newcommand{\ortho}[1]{{#1}^{\bot}} \newcommand{\oplusbot}{\overset{\bot}{\oplus}} \SelectTips{cm}{12}%Change le bout des flèches dans un xymatrix \newcommand{\pourDES}[8]{ \begin{itemize} \item Pour la ligne : le premier et dernier caractère forment $#1#2$ soit $#4$ en base 10. \item Pour la colonne : les autres caractères du bloc forment $#3$ soit $#5$ en base 10. \item A l'intersection de la ligne $#4+1$ et de la colonne $#5+1$ de $S_{#8}$ se trouve l'entier $#6$ qui, codé sur $4$ bits, est \textbf{\texttt{$#7$}}. \end{itemize} } \)
Exercice

L'exercice suivant est automatiquement et aléatoirement généré par ataraXy.
Si vous regénérez la page (F5) les valeurs seront changées.
La correction se trouve en bas de page.


Exercice


Calculer les dérivées suivantes. Il n'est pas nécessaire de simplifier (factoriser etc) les expressions obtenues.
  1. \( f_{1}(x)=9 x^{3} +\dfrac{20}{7} x +4\) .
  2. \( f_{2}(x)=\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}\) .
  3. \( f_{3}(x)=\left(9 x^{3} +\dfrac{20}{7} x +4\right)^{250}\) .
  4. \( f_{4}(x)=\dfrac{1}{\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}}\) .
  5. \( f_{5}(x)=\dfrac{1}{\left(\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}\right)^{250}}\) .
  6. \( f_{6}(x)=\sqrt{\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}}\) .
  7. \( f_{7}(x)=\left(9 x^{3} +\dfrac{20}{7} x +4\right)\left(\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}\right)\) .
  8. \( f_{8}(x)=\dfrac{9 x^{3} +\dfrac{20}{7} x +4}{\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}}\) .
  9. \( f_{9}(x)=\dfrac{\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}}{\sqrt{9 x^{3} +\dfrac{20}{7} x +4}}\) .
Cliquer ici pour afficher la solution

Exercice


  1. \( f_{1}(x)=9 x^{3} +\dfrac{20}{7} x +4\) . Il s'agit de dériver un polynôme.\[ f'_{1}(x)=27 x^{2} +\dfrac{20}{7}\]
  2. \( f_{2}(x)=\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}\) . Il s'agit de dériver un polynôme.\[ f'_{2}(x)=\dfrac{177}{7} x^{2} +12 x +7\]
  3. \( f_{3}(x)=\left(9 x^{3} +\dfrac{20}{7} x +4\right)^{250}\) . La dérivé de \( u^n\) est \( n\times u'\times u^{n-1}\) .\[ f'_{3}(x)=\left(250\right)\left(27 x^{2} +\dfrac{20}{7}\right)\left(9 x^{3} +\dfrac{20}{7} x +4\right)^{249}\]
  4. \( f_{4}(x)=\dfrac{1}{\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}}\) . La dérivé de \( \dfrac{1}{u}\) est \( \dfrac{-u'}{u^2}\) .\[ f'_{4}(x)=\dfrac{-\dfrac{177}{7} x^{2} -12 x -7}{\left(\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}\right)^{2}}\]
  5. \( f_{5}(x)=\dfrac{1}{\left(\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}\right)^{250}}\) . La dérivé de \( \dfrac{1}{u^n}\) est \( -\dfrac{n\times u'}{u^{n+1}}\) .\[ f'_{5}(x)=\dfrac{-\dfrac{44250}{7} x^{2} -3000 x -1750}{\left(\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}\right)^{251}}\]
  6. \( f_{6}(x)=\sqrt{\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}}\) . La dérivé de \( \sqrt{u}\) est \( \dfrac{u'}{2\sqrt{u}}\) .\[ f'_{6}(x)=\dfrac{\dfrac{177}{7} x^{2} +12 x +7}{\left(2\right)\sqrt{\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}}}\]
  7. \( f_{7}(x)=\left(9 x^{3} +\dfrac{20}{7} x +4\right)\left(\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}\right)\) . La dérivé de \( uv\) est \( u'v+v'u\) .\[ f'_{7}(x)=\dfrac{3186}{7} x^{5} +270 x^{4} +\dfrac{17068}{49} x^{3} +\dfrac{2472}{7} x^{2} +88 x +\dfrac{2412}{49}\]
  8. \( f_{8}(x)=\dfrac{9 x^{3} +\dfrac{20}{7} x +4}{\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}}\) . La dérivé de \( \dfrac{u}{v}\) est \( \dfrac{u'v-v'u}{v^2}\) .\[ f'_{8}(x)=\dfrac{54 x^{4} +\dfrac{3814}{49} x^{3} +\dfrac{576}{7} x^{2} -48 x -\dfrac{332}{49}}{\left(\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}\right)^{2}}\]
  9. \( f_{9}(x)=\dfrac{\dfrac{59}{7} x^{3} +6 x^{2} +7 x +\dfrac{52}{7}}{\sqrt{9 x^{3} +\dfrac{20}{7} x +4}}\) . Pour cette dérivé on melange la dérivation d'un quotient et celle d'une racine carré. On souffre en silence.\[ f'_{9}(x)=\dfrac{\left(\dfrac{177}{7} x^{2} +12 x +7\right)\sqrt{9 x^{3} +\dfrac{20}{7} x +4}+\dfrac{-\dfrac{1593}{7} x^{5} -162 x^{4} -\dfrac{10441}{49} x^{3} -\dfrac{1524}{7} x^{2} -20 x -\dfrac{1040}{49}}{\left(2\right)\sqrt{9 x^{3} +\dfrac{20}{7} x +4}}}{\sqrt{9 x^{3} +\dfrac{20}{7} x +4}^{2}}\]