NOM: PRENOM: GROUPE:

Contrôle A Algèbre de Boole

Janvier 2019

 $La\ qualit\'e\ de\ la\ r\'edaction\ ainsi\ que\ la\ propret\'e\ de\ la\ copie\ seront\ pris\ en\ compte\ dans\ l'\'evaluation.$

Exercice 1	5
[QUESTION DE COURS]	min
Écrire, dans une algèbre de Boole quelconque, les deux relations dites $d'absorption 2$.	2
	-
Exercice 2	15 min
Dans une algèbre de Boole quelconque $(\mathbb{B}, 0, 1, +, \times, \overline{\bullet})$, on considère l'opération somme disjonctive :	111111
$\forall a,b \in \mathbb{B}, a \oplus b = (\overline{a} \times b) + (a \times \overline{b})$	
1. Soit $\mathcal E$ un ensemble. Considérons l'algèbre de Boole $(\mathcal P(\mathcal E),\varnothing,\mathcal E,\cup,\cap,\overline{\bullet})$ des parties de $\mathcal E$. Pour deux sous-ensembles A et B de $\mathcal E$ donner le diagramme de Venn représentant $A\oplus B$.	1
2. Calculer:	
(a) $\alpha \oplus 0$	1
(b) $\alpha \oplus 1$	1
(c) $a \oplus a$	1
	-
$(\mathrm{d}) \ \ \mathfrak{a} \oplus \overline{\mathfrak{a}}$	4
(a) a \oplus a	1

3.	${\rm Montrer}$	que	$(\mathfrak{a} \oplus$	b) ⊕	$(a \oplus c)$) = b	\oplus c.
----	-----------------	-----	------------------------	------	----------------	-------	-------------

3

Exercice 3

15 min

Soit $\mathbb{D}=\mathcal{D}^+(9)$ l'ensemble des diviseurs positifs de 9. On munit cet ensemble des opérations suivantes :

- a + b = PPCM(a, b)
- $a \times b = PGCD(a, b)$
- $\overline{a} = \frac{9}{a}$
 - 1. Déterminer l'ensemble \mathbb{D} .

2

5

2. Donner les tables d'additions, de multiplication et de complémentation.

+		

×	(

<u>a</u> | <u>a</u>

3. Expliquer pourquoi D n'est pas une algèbre de Boole.

3